Vai al contenuto principale della pagina

Bounded Littlewood Identities



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Rains Eric M Visualizza persona
Titolo: Bounded Littlewood Identities Visualizza cluster
Pubblicazione: Providence : , : American Mathematical Society, , 2021
©2021
Edizione: 1st ed.
Descrizione fisica: 1 online resource (129 pages)
Disciplina: 515/.55
Soggetto topico: Orthogonal polynomials
Combinatorial identities
Combinatorics -- Algebraic combinatorics -- Symmetric functions and generalizations
Combinatorics -- Algebraic combinatorics -- Combinatorial aspects of representation theory
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
Special functions -- Basic hypergeometric functions -- Basic hypergeometric functions associated with root systems
Classificazione: 05E0505E1017B6733D67
Altri autori: WarnaarS. Ole  
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Cover -- Title page -- Acknowledgements -- Chapter 1. Introduction -- 1.1. Littlewood identities -- 1.2. Outline -- Chapter 2. Macdonald-Koornwinder theory -- 2.1. Partitions -- 2.2. Generalised -shifted factorials -- 2.3. Rogers-Szegő polynomials -- 2.4. Plethystic notation -- 2.5. Macdonald polynomials -- 2.6. Koornwinder polynomials -- 2.7. Macdonald-Koornwinder polynomials -- 2.8. Hall-Littlewood polynomials -- Chapter 3. Virtual Koornwinder integrals -- 3.1. Basic definitions -- 3.2. Closed-form evaluations-the Macdonald case -- 3.3. Closed-form evaluations-the Hall-Littlewood case -- Chapter 4. Bounded Littlewood identities -- 4.1. Statement of results -- 4.2. Proofs of Theorems 4.1-4.8 -- Chapter 5. Applications -- 5.1. Plane partitions -- 5.2. Character identities for affine Lie algebras -- 5.3. Rogers-Ramanujan identities -- 5.4. Quadratic transformations for Kaneko-Macdonald-type basic hypergeometric series -- Chapter 6. Open problems -- 6.1. Missing -analogues -- 6.2. Littlewood identities for near-rectangular partitions -- 6.3. Littlewood identities of Pfaffian type -- 6.4. Elliptic Littlewood identities -- 6.5. , -Littlewood-Richardson coefficients -- 6.6. Dyson-Macdonald-type identities -- Appendix A. The Weyl-Kac formula -- Appendix B. Limits of elliptic hypergeometric integrals -- Bibliography -- Back Cover.
Sommario/riassunto: "We describe a method, based on the theory of Macdonald-Koornwinder polynomials, for proving bounded Littlewood identities. Our approach provides an alternative to Macdonald's partial fraction technique and results in the first examples of bounded Littlewood identities for Macdonald polynomials. These identities, which take the form of decomposition formulas for Macdonald polynomials of type (R, S) in terms of ordinary Macdonald polynomials, are q, t-analogues of known branching formulas for characters of the symplectic, orthogonal and special orthogonal groups. In the classical limit, our method implies that MacMahon's famous ex-conjecture for the generating function of symmetric plane partitions in a box follows from the identification of GL(n,R), O(n) as a Gelfand pair. As further applications, we obtain combinatorial formulas for characters of affine Lie algebras; Rogers-Ramanujan identities for affine Lie algebras, complementing recent results of Griffin et al.; and quadratic transformation formulas for Kaneko-Macdonald-type basic hypergeometric series"--
Titolo autorizzato: Bounded Littlewood Identities  Visualizza cluster
ISBN: 9781470465223
1470465221
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910957044203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilitĂ  qui
Serie: Memoirs of the American Mathematical Society