Vai al contenuto principale della pagina

Real-Time Ground-Based Flight Data and Cockpit Voice Recorder : Implementation Scenarios and Feasibility Analysis



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Matalgah Mustafa M Visualizza persona
Titolo: Real-Time Ground-Based Flight Data and Cockpit Voice Recorder : Implementation Scenarios and Feasibility Analysis Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (188 pages)
Soggetto topico: Flight recorders
Cockpit voice recorders
Aircraft accidents
Altri autori: AlqodahMohammed Ali  
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Foreword -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Introduction -- 1.1 Motivation -- 1.2 Entities Involved in Air Crash Investigations -- 1.2.1 Federal Aviation Administration (FAA) -- 1.2.2 National Transportation Board (NTSB) -- 1.2.3 Operator (Airline) -- 1.2.4 Equipment Manufacturer -- 1.3 Existing Traditional FDR/CVR -- 1.3.1 Traditional FDR/CVR History -- 1.3.2 Flight Data Recorder (FDR) -- 1.3.3 The Cockpit Voice Recorder (CVR) -- 1.3.4 Other Types of Recorders -- 1.3.4.1 Deployable Recorders -- 1.3.4.2 Combined Recorders -- 1.3.4.3 Image Recorders -- 1.4 Real‐Time Data Transmission as a Solution -- 1.5 System Capacity Requirements -- 1.6 Summary -- References -- Chapter 2 State of the Art -- 2.1 Preceding Research -- 2.2 Wireless FDR/CVR Products in Market -- 2.2.1 Honeywell Connected Recorder -- 2.2.1.1 Honeywell Connected Recorder (HCR‐25) Specifications -- 2.2.2 FLYHTStream -- 2.2.2.1 FLYHT AFIRS 228 Family Specifications -- 2.3 Wireless FDR/CVR Challenges -- 2.3.1 The Cost Aspect -- 2.3.2 Industry Factors -- 2.3.3 Lack of Regulations -- 2.4 Summary -- References -- Chapter 3 Aviation Communication Overview -- 3.1 History -- 3.1.1 Wireless Telegraphy Era -- 3.1.2 Analog Radio Communication Era -- 3.1.3 Digital Radio Communication Era -- 3.1.4 Digital Data Link Era -- 3.2 Communication Traffic Classes -- 3.3 Main Actors and Organizations -- 3.3.1 Aviation Authorities -- 3.3.2 Air Transport Industry -- 3.3.3 Aviation Datalink Service Providers -- 3.3.4 Aviation Stakeholders -- 3.3.4.1 ANSPs -- 3.3.4.2 Airlines -- 3.3.4.3 Meteorological Centers -- 3.4 Spectrum Allocation to Aeronautical Services -- 3.5 Air‐to‐Air Communications -- 3.5.1 TCAS Communications -- 3.5.2 VHF Communications -- 3.5.3 ADS‐B Air‐to‐Air Communications.
3.6 Air‐to‐Ground Communications -- 3.6.1 HF Air‐to‐Ground Communications -- 3.6.2 Satellite Communications (SATCOM) -- 3.6.3 VHF Data Broadcast (VDB) Communications -- 3.6.4 ADS‐B/ADS‐R/TIS‐B Air‐to‐Ground Communications -- 3.7 Summary -- References -- Chapter 4 Satellite Data Transfer Implementation -- 4.1 The Iridium Satellite System -- 4.2 Iridium First Generation -- 4.2.1 Technical Description -- 4.2.2 Channels -- 4.2.3 Channel Data Rate -- 4.3 Second Generation -- 4.3.1 Orbit -- 4.3.2 Spacecraft -- 4.3.3 Characteristics and Communication Links -- 4.3.3.1 The Subscriber Links -- 4.3.3.2 The Feeder Links -- 4.3.3.3 The Inter‐Satellite Links -- 4.3.3.4 The Telemetry, Tracking, and Commanding (TT& -- C) Links -- 4.3.4 Band Frequency Reuse -- 4.3.4.1 TDMA Frame Structure -- 4.4 PSTN‐Based Data Transfer Implementation: One Channel per Aircraft -- 4.5 Alternative Satellite Transmission Implementations -- 4.5.1 Fixed Slot Allocation per Aircraft per Burst -- 4.5.1.1 Slots per Burst Data Transfer -- 4.5.2 Single Second Bursts with Variable Slot Assignment per Frame -- 4.5.2.1 Single Second Burst Data Transmission -- 4.6 Data Transfer - Internet Protocol over Satellite Link Data Transmission -- 4.6.1 The Iridium Data Channel -- 4.6.2 Packet and Frame Structure -- 4.6.3 Data Transfer with Internet Protocols -- 4.6.3.1 Setup and Control -- 4.6.3.2 Data Packet Transmissions -- 4.7 Number of Channels Needed to Support 5000 Planes -- 4.8 Expected Availability of Spectrum -- 4.9 Emerging LEO Satellite Constellations -- 4.9.1 Problem Formulation -- 4.9.2 Results -- 4.10 Discussion -- 4.11 Summary -- References -- Chapter 5 VHF Digital Link Implementation -- 5.1 VHF Communications System -- 5.2 VDL Modes -- 5.2.1 VDL Mode 0 -- 5.2.2 VDL Mode 2 -- 5.2.3 VDL Mode 3 -- 5.2.4 VDL Mode 4 -- 5.3 Data Transfer - VDL Mode 4 Implementation.
5.3.1 Consecutive Time Slot Bursts -- 5.3.2 Alternative VDL Mode 4 Transmission Scenarios -- 5.3.2.1 No Buffer and Burst -- 5.3.2.2 Two Second Buffer and Burst -- 5.3.2.3 Three Second Buffer and Burst -- 5.4 Data Transfer - Internet Protocol Over VDL Transmission -- 5.4.1 Data Transfer with Internet Protocols -- 5.4.1.1 Setup and Control -- 5.4.2 Packet and Frame Structure -- 5.4.3 Data Packet Transmissions -- 5.5 Number of Channels Needed to Support 5000 Planes -- 5.6 Expected Availability of Spectrum -- 5.7 Summary -- References -- Chapter 6 Cooperative Data Transmission Implementations -- 6.1 VDL System‐Based Relaying -- 6.2 VHF and Satellite System Cooperation -- 6.3 Aeronautical Ad‐hoc Network (AANET) -- 6.4 Software‐Defined Networking -- 6.5 Summary -- References -- Chapter 7 UAV Wireless Networks and Recorders -- 7.1 UAV Communication Networks -- 7.2 Space‐Air‐Ground Integrated Network for 5G/B5G Wireless Communications -- 7.3 Integrating UAVs Into Aviation Communication -- 7.4 UAV Recorders -- 7.5 Summary -- References -- Chapter 8 Future Aviation Communication -- 8.1 System Wide Information Management (SWIM) -- 8.1.1 SWIM Definition -- 8.1.2 SWIM Principles -- 8.1.3 SWIM Layers -- 8.2 Air‐to‐Ground (A2G) Future Communication -- 8.3 Advancements in Air‐to‐Air (A2A) Communication for Aviation -- 8.3.1 Airborne Collision Avoidance System (ACAS) -- 8.3.2 Airborne Separation Assurance Systems (ASAS) -- 8.3.3 L‐DACS1 A2A Mode -- 8.3.4 Free‐Space Optical (FSO) Communications -- 8.4 Emerging Technologies Shaping Aviation Communication -- 8.4.1 Single‐Pilot Operations (SPOs) -- 8.4.2 Troposcatter Communications -- 8.4.3 Near Vertical Incidence Skywave (NVIS) Communications -- 8.5 Machine Learning in Future Communications -- 8.6 Summary -- References -- Appendix A -- A.1 Useful MATLAB Codes -- A.1.1 Iridium Satellite Constellation Viewer.
A.1.2 Iridium Satellite Constellation Footprints -- A.1.3 Large Satellite Constellation Implementation for Ground‐Based FDR/CVR Recorders -- Index -- EULA.
Sommario/riassunto: "Aviation safety in air travel has always been a vital part of the aviation industry. Endless man-hours have gone into improving the safety standards of aircraft for civilian, commercial, and military aviation. Since the inception of commercial aviation, industry safety standards have improved dramatically, making flying one of the safest modes of transportation today. Even with a great record of safety today, measures are still undertaken to ensure that aviation accidents are not only well understood, but also that they may, in the future, be made avoidable. Studying and understanding the cause of aircraft incidents and crashes is one of the main methods that are used to ensure that transportation in the sky is as safe as possible. One of the main methods used by investigators and engineers to study the causes of aircraft accidents is by use of the Flight Data and Cockpit Voice Recorder (FDR/CVR), also known as the Black Box. However, FDR/CVR has not been efficiently useful in some catastrophic accidents such as the recent Aeroflot Flight 1492 (a Sukhoi Superjet 100) that was operating a domestic flight in Russia [Hradecky, 2019], the Lion Air Flight 610 (a Boeing 737 MAX 8) that crashed into the Java Sea shortly after takeoff from Soekarno-Hatta International Airport in Jakarta [National Transportation Safety, 2018], the EgyptAir flight 804 (an Airbus A320) that crashed into the Mediterranean Sea."
Titolo autorizzato: Real-Time Ground-Based Flight Data and Cockpit Voice Recorder  Visualizza cluster
ISBN: 1-119-98487-4
1-119-98488-2
1-119-98489-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910877476603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui