Vai al contenuto principale della pagina
Autore: |
Thomas Jince
![]() |
Titolo: |
Alkaline Anion Exchange Membranes for Fuel Cells : From Tailored Materials to Novel Applications
![]() |
Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
©2024 | |
Edizione: | 1st ed. |
Descrizione fisica: | 1 online resource (451 pages) |
Altri autori: |
SchechterAlex
![]() ![]() ![]() ![]() |
Nota di contenuto: | Cover -- Title Page -- Copyright Page -- Contents -- Preface -- 1 An Introduction to Polymeric Electrolyte Alkaline Anion Exchange Membranes -- 1.1 Introduction -- 1.2 Different Types of Electrolytes -- 1.3 Why Polymer Electrolytes Are Important? -- 1.4 Anion Exchange Membrane (AEM) -- 1.4.1 Fundamental Concepts of Anion Exchange Membranes as Polymer Electrolytes -- 1.4.2 Classification of AEM -- 1.4.3 Pros and Cons of AEM -- 1.4.4 Application of AEM -- 1.5 AEMs in Fuel Cells -- 1.6 Conclusion and Outlook -- References -- 2 Historical and Recent Developments inAnion Exchange Membranes (AEM) -- 2.1 Introduction -- 2.2 Fuel Cell: Conventional Versus Modern Approach -- 2.3 Role of AEM in Fuel Cell Technology -- 2.4 Preparation of AEMs -- 2.5 Challenges in Existing AEMs -- 2.6 Recent Advancement -- 2.7 Major Challenges -- 2.8 Commercially Available AEMs -- 2.9 Current Scenario and Future Market -- 2.10 Summary and Concluding Remarks -- References -- 3 Fabrication Processes and Characterization Proceduresof Anion Exchange Membranes -- 3.1 Introduction -- 3.2 Fabrication Processes of Anion Exchange Membranes -- 3.2.1 AEM of Cationic Charged Polymers -- 3.2.2 AEMs of Ion-Solvating Polymers -- 3.2.3 AEMs with Nanofibers -- 3.2.4 Hybrid AEMs -- 3.2.5 Recent Developments in AEMs -- 3.3 Characterization Procedures of AEMs -- 3.3.1 Ionic Conductivity -- 3.3.2 IEC, Swelling Ratio, and Water Content -- 3.3.3 Mechanical and Thermal Properties -- 3.3.4 Chemical Stability -- 3.3.5 Chemical Composition and Morphological Characterization -- 3.3.6 Other Characterizations -- 3.4 Conclusions -- References -- 4 Types of Polymeric Electrolyte Anion Exchange Membranes: Heterogeneous and Grafted Membranes, Interpenetrating Polymer Networks and Homogeneous Membranes -- 4.1 Heterogenous Anion Exchange Membranes -- 4.1.1 Ion-Solvating Polymers -- 4.1.2 Hybrid Membranes. |
4.2 Grafted Anion Exchange Membranes -- 4.2.1 Radiation-Grafted Membranes -- 4.2.2 Side Chain Grafted Membranes -- 4.2.3 Long-side-chain Grafted Membranes -- 4.3 Interpenetrating Anion Exchange Membranes -- 4.3.1 Anion Exchange Membranes Based on Interpenetrating Polymer Networks (IPN) -- 4.3.2 Anion Exchange Membranes Based on Semi-Interpenetrating Polymer Networks (Semi-IPN) -- 4.4 Homogenous Membranes -- 4.4.1 Homogenous Membranes Based on Poly(arylene ether)s -- 4.4.2 Homogenous Membranes Based on Poly(styrene)s -- 4.4.3 Homogenous Membranes Based on Poly(2,6-dimethyl-1,4-phenylene oxide) -- 4.4.4 Fluorene-Containing Homogenous Membranes -- 4.4.5 Homogenous Membranes Based on Polyolefins -- 4.4.6 Other Kinds of Homogenous Membranes -- 4.5 Conclusions -- References -- 5 Proton Exchange Membranes Versus Anion Exchange Membranes -- 5.1 Introduction -- 5.2 Proton Exchange Membrane (PEM) -- 5.2.1 Classification of PEM Membranes Based on the Materials of Synthesis -- 5.2.1.1 Perfluorinated Ionomeric Membranes -- 5.2.1.2 Partially Fluorinated Hydrocarbon Membranes -- 5.2.1.3 Non-fluorinated Hydrocarbon Membranes -- 5.2.1.4 Acid-Base Complexes -- 5.2.2 Preparation Methods of PEM -- 5.2.3 Proton Transport Mechanism in PEM -- 5.2.4 Current State of Art of PEM -- 5.3 Comparison with AEM -- 5.3.1 Materials Used for Preparations -- 5.3.2 Investigative Methods and Measurement for Ion-Exchange Membranes -- 5.3.2.1 Ionic Conductivity -- 5.3.2.2 Water Absorption or Swelling Index -- 5.3.2.3 Ion-Exchange Capacity (IEC) of the Membrane -- 5.3.2.4 Thermal Stability and Mechanical Strength -- 5.3.2.5 Durability of the Membranes -- 5.3.3 Water Management -- 5.3.4 Transport Mechanism -- 5.3.5 Catalyst Used in PEMFC and AEMFC -- 5.3.6 MEA Fabrication -- 5.3.7 Fuels Used in Fuel Cells -- 5.3.8 Fuel Cell Efficiency -- 5.4 Conclusion -- References. | |
6 Transport and Conductive Mechanisms in Anion Exchange Membranes -- 6.1 Introduction -- 6.2 Transport Mechanisms of Hydroxide Ion in AEMs -- 6.3 AEM Structure-Transport Efficiency Relationships -- 6.4 Ion Conductivity Measurement -- 6.5 Carbonation Process in AEMs -- 6.5.1 Elucidating the Dynamics of Carbonation -- 6.5.2 Impact of Carbonation on AEM and AEMFC -- 6.5.3 Strategies to Avoid Carbonation of OH Ions -- 6.6 Conclusion and Outlook -- References -- 7 Anion Exchange Membranes Based on Quaternary Ammonium Cations and Modified Quaternary Ammonium Cations -- 7.1 Introduction -- 7.1.1 Background of AEMFC Invention -- 7.2 Quaternary Ammonium (QA)-Based AEMs - Recent Developments and Performances -- 7.3 Other Factors Affecting Performance of Fuel Cells -- 7.4 Summary and Perspectives -- Acknowledgments -- References -- 8 Guanidinium Cations and Their Derivatives-Based Anion Exchange Membranes -- 8.1 Introduction -- 8.2 General Synthetic Method of Various Guanidiniums -- 8.3 Degradation Mechanism and Alkaline Stability of Guanidinium Cations -- 8.4 Preparation of Guanidinium and Their Derivative-Based AEMs -- 8.4.1 Benzyl-guanidinium AEMs -- 8.4.2 Alkyl-guanidinium AEMs -- 8.4.3 Aryl-guanidinium AEMs -- 8.4.4 Other Guanidinium-Based AEMs -- 8.5 Prospect -- References -- 9 Anion Exchange Membranes Based on Imidazolium and Triazolium Cations -- 9.1 Introduction -- 9.2 AEMs Based on Imidazolium Cations -- 9.2.1 AEMs Based on Imidazolium-type Ionic Liquids -- 9.2.2 Imidazole Containing Polymers and Composites -- 9.3 AEM Based on Triazolium Cations -- 9.4 Summary and Future Perspectives -- Acknowledgments -- References -- 10 Radiation-Grafted and Cross-linked Polymers-Based Anion Exchange Membranes -- 10.1 Historic Overview -- 10.2 Sources of Radiation -- 10.3 Types of Radiation-Induced Grafting -- 10.3.1 Absorbed Dose -- 10.3.2 Dose Rate. | |
10.3.3 Atmosphere During Irradiation -- 10.3.4 Temperature During Irradiation -- 10.4 Base Polymer -- 10.5 Grafting Solution -- 10.6 Physicochemical Properties of RG-AEMs -- 10.7 Cross-linking in AEMs -- 10.7.1 Physical Cross-linking -- 10.7.2 Chemical Cross-linking -- 10.7.2.1 Cross-linking with Diamine Agents -- 10.7.2.2 Chemical Cross-linking Reaction with Other Agents -- 10.7.2.3 Other Methods of Producing Cross-linked Membranes -- 10.8 Conclusions -- References -- 11 Degradation Mechanisms of Anion Exchange Membranes due to Alkali Hydrolysis and Radical Oxidative Species -- 11.1 Introduction -- 11.2 Necessity to Investigate the Degradation Mechanism in AEMs -- 11.3 Structure and Degradation Mechanism of Tailored Anion Exchange Groups and Polymers -- 11.3.1 Alkaline Hydrolysis of Cationic Head Groups -- 11.3.2 Alkaline Hydrolysis of Novel Metallocenium Based AEMs -- 11.3.3 Alkaline Hydrolysis of Polymers -- 11.3.3.1 Degradation Mechanism in Poly(arylene ethers) (PAEs) -- 11.3.3.2 Degradation Mechanism in Fluorinated Polymer -- 11.3.3.3 Degradation Mechanism in Poly(benzimidazole) Based Polymers -- 11.3.3.4 Degradation Mechanism in Poly(alkyl) and Poly(arene) Based Polymers -- 11.3.4 Free Radical Oxidative Degradation of AEM -- 11.4 Prospects and Outlook -- 11.5 Conclusion -- References -- 12 Computational Approaches to Alkaline Anion Exchange Membranes -- 12.1 Introduction -- 12.2 Why Computational Studies Are Important in Anion Exchange Membranes? -- 12.3 Tools of In Silico Approaches in Anion Exchange Membranes -- 12.3.1 Electronic Structure Methods in Anion Exchange Membranes -- 12.3.1.1 Analysis on HOMO-LUMO Energies and Mulliken Charges -- 12.3.1.2 Analysis on ESP -- 12.3.1.3 Analysis on Chemical Structure and Bonding Nature -- 12.3.1.4 Analysis on Degradation Pathways -- 12.3.2 Molecular Dynamics in Anion Exchange Membranes. | |
12.3.3 Continuum Modeling and Simulation in Anion Exchange Membranes -- 12.3.4 Monte Carlo Simulations in Anion Exchange Membranes -- 12.3.5 Machine Learning in Anion Exchange Membranes -- 12.4 Challenges and Outlook -- 12.5 Conclusion -- References -- 13 An Overview of Commercial and Non-commercial Anion Exchange Membranes -- 13.1 Introduction -- 13.1.1 Characteristics and Existing Problems of Commercial Alkaline Anion Exchange Membranes -- 13.1.1.1 Fumatech: Fumasep -- 13.1.1.2 Tokuyama: A201 -- 13.1.1.3 Ionomr: AEMION -- 13.1.1.4 Dioxide Materials: Sustainion -- 13.1.1.5 Orion Polymer: Orion TM1 -- 13.1.1.6 Xergy: Xion-Dappion, Xion-Durion, Xion-Pention -- 13.1.1.7 Versogen: PiperION -- 13.1.1.8 Membranes International Inc.: AMI-7001 -- 13.1.1.9 Asahi Glass: Selemion AMV -- 13.1.2 Characteristics and Existing Problems of Non-Commercial Alkaline Anion Exchange Membrane -- 13.1.3 Strategies to Improve the Properties of AEMs -- 13.1.3.1 The Regulation of Microphase Morphologies -- 13.1.3.2 Constructing Free Volumes -- 13.1.3.3 The Introduction of Cross-linking Structures -- 13.1.3.4 Other Physical Methods -- 13.1.3.5 The Development of Novel Cationic Functional Groups and Aryl Ether-free Main Chains with High Stability -- 13.2 Summary and Outlooks -- Acknowledgment -- References -- 14 Membrane Electrode Assembly Preparation for Anion Exchange Membrane Fuel Cell (AEMFC): Selection of Ionomers and How to Avoid CO2 Poisoning -- 14.1 The Preparation of Membrane Electrode Assembly -- 14.2 Selection of Ionomers -- 14.2.1 Commercial Ionomers -- 14.2.2 Custom-made Ionomers -- 14.3 Effect of CO2 on AEMFCs -- 14.3.1 Effect of CO2 on Ex Situ Measured Conductivity -- 14.3.2 Effect of CO2 on Electrochemical Reactions on the Electrodes -- 14.3.3 Effect of CO2 on Fuel Cell Performance -- 14.4 Strategies to Avoid CO2 Poisoning. | |
14.4.1 Reducing HCO3/CO32 Concentration Through Self-purging. | |
Titolo autorizzato: | Alkaline Anion Exchange Membranes for Fuel Cells ![]() |
ISBN: | 3-527-83758-2 |
3-527-83760-4 | |
Formato: | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910830286803321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |