Vai al contenuto principale della pagina
Autore: | Berger Lisa <1969-> |
Titolo: | Explicit arithmetic of Jacobians of generalized Legendre curves over global function fields / / Lisa Berger [and seven others] |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [2020] |
©2020 | |
Descrizione fisica: | 1 online resource (144 pages) |
Disciplina: | 516.352 |
Soggetto topico: | Curves, Algebraic |
Legendre's functions | |
Rational points (Geometry) | |
Birch-Swinnerton-Dyer conjecture | |
Jacobians | |
Abelian varieties | |
Finite fields (Algebra) | |
Classificazione: | 11G1011G3011G4014G0514G2514K15 |
Persona (resp. second.): | HallChris <1975-> |
PannekoekRené | |
ParkJennifer Mun Young | |
PriesRachel <1972-> | |
SharifShahed <1977-> | |
SilverbergAlice | |
UlmerDouglas <1960-> | |
Note generali: | "Forthcoming, volume 266, number 1295." |
Nota di bibliografia: | Includes bibliographical references. |
Nota di contenuto: | The curve, explicit divisors, and relations -- Descent calculations -- Minimal regular model, local invariants, and domination by a product of curves -- Heights and the visible subgroup -- The L-function and the BSD conjecture -- Analysis of J[p] and NS(Xd)tor -- Index of the visible subgroup and the Tate-Shafarevich group -- Monodromy of â„“-torsion and decomposition of the Jacobian. |
Sommario/riassunto: | "We study the Jacobian J of the smooth projective curve C of genus r-1 with affine model yr = xr-1(x+ 1)(x + t) over the function field Fp(t), when p is prime and r [greater than or equal to] 2 is an integer prime to p. When q is a power of p and d is a positive integer, we compute the L-function of J over Fq(t1/d) and show that the Birch and Swinnerton-Dyer conjecture holds for J over Fq(t1/d). When d is divisible by r and of the form p[nu] + 1, and Kd := Fp([mu]d, t1/d), we write down explicit points in J(Kd), show that they generate a subgroup V of rank (r-1)(d-2) whose index in J(Kd) is finite and a power of p, and show that the order of the Tate-Shafarevich group of J over Kd is [J(Kd) : V ]2. When r > 2, we prove that the "new" part of J is isogenous over Fp(t) to the square of a simple abelian variety of dimension [phi](r)/2 with endomorphism algebra Z[[mu]r]+. For a prime with pr, we prove that J[](L) = {0} for any abelian extension L of Fp(t)"-- |
Titolo autorizzato: | Explicit arithmetic of Jacobians of generalized Legendre curves over global function fields |
ISBN: | 1-4704-6253-2 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910813546003321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |