Vai al contenuto principale della pagina
Titolo: | Radioactive contamination research developments / / Nadine K. Henshaw and Cade S. Alleyne, editors |
Pubblicazione: | New York, : Nova Science Publishers, c2010 |
Edizione: | 1st ed. |
Descrizione fisica: | 1 online resource (308 p.) |
Disciplina: | 363.17/9907 |
Soggetto topico: | Radioactive pollution |
Radioecology | |
Altri autori: | HenshawNadine K AlleyneCade S |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Intro -- RADIOACTIVE CONTAMINATION RESEARCH DEVELOPMENTS -- RADIOACTIVE CONTAMINATION RESEARCH DEVELOPMENTS -- CONTENTS -- PREFACE -- Chapter 1PROGRESSES IN RADIOACTIVECONTAMINATION RESEARCHES -- Abstract -- 1. Introduction -- 2. Radiation and Radioactivity -- 2.1. Radiation -- 2.2. Background Radiation -- 2.3. Radioactivity -- 2.4. Radioactive Contamination and Radiation Exposure -- 3. Characteristics of Fundemental Radionuclides -- 3.1. Distribution of Radioactivity -- 3.1.1. Crystalline Rocks -- 3.1.2. Sedimentary Rocks -- 3.1.3. Organic-Rich Shales and Coal -- 3.1.4. Sandstones -- 3.1.5. Carbonates Rocks -- 3.1.6. Residual Soils -- 3.1.7. Phosphrites -- 4. Nuclear Test Fallout -- 5. Radioactive Contamination Researches -- 5.1. Sampling -- 5.2. Monitoring -- 5.3. Measurements -- 5.3.1. Counting Instruments -- 5.3.2. Internal Proportional Counters -- 5.3.3. End-Window Counters -- 5.3.4. Thin-Window Proportional Counter -- 5.3.5. Low-Background Beta Counter -- 5.3.6. Gamma Spectrometer -- 5.3.7. Alpha Spectrometer -- 5.3.8. Alpha Scintillation Counter -- 5.3.9. Liquid Beta Scintillation Counter -- 5.4. Assessment and Modeling -- 5.4.1. Spatial Modeling of Radioactive Contamination -- 5.4.1.1. Classical Variogram Methodologies -- 5.4.2. Point Cumulative Semivariogram (PCSV) Technique -- 5.4.3. Spatio-Temporal Point Cumulative Semivariogram (STPCSV) Technique -- 5.4.4. Multivariate Statistical Analysis of Radioactive Contaminiation -- 5.4.4.1 Basic Statistical Analysis -- 5.4.4.2. Advanced Statistical Analysis -- Factor Analysis -- Cluster Analysis -- 5.4.5. Risk Assessment of Radioactive Contamination -- Risk Methodology -- 5.4.6. A New Concept for Radioactive Contamination Researches -- Perturbation Distribution Coefficient Definition -- Perturbation Method -- 5.4.7. Soft Computing For Radioactive Contamination Researches. |
Artificial Neural Networks (ANN) -- 5.4.8. Earthquake Prediction with Nuclear-Soft Computing -- References -- Chapter 2BIOINDICATORS IN THE ASSESSMENTOF ATMOSPHERIC RADIOACTIVITY:CURRENT APPROACHES AND PERSPECTIVES -- Abstract -- 1. Introduction -- 2. Atmospheric Radioactivity and Its Impact on Biota -- 3. Assessment of Atmospheric Radioactivity Using Bioindicators -- 4. Estimating Radionuclide Transfer to Biota -- 4.1. Post-Chernobyl Studies -- 4.2. The Concept of a Reference Organism -- 4.3. Quantification of Radionuclide Transfer to Biota Using ReferenceOrganisms -- 4.4. Models for the Assessment of Transfer to Non-human Biota -- 5. Mosses and Lichens as Biomonitors -- 5.1. Physiological Specificities -- 5.2. Ion Exchange Process -- 5.3. Interaction of 137 Cs+ with Organic Molecules -- 5.4. Entrapment of the Solubilized 137Cs+ in a Crystalline Lattice -- 5.5. Intracellular Compartmentalization of 137Cs+ -- Conclusion -- Acknowledgements -- References -- Chapter 3VETOING TECHNIQUES IN RADIOACTIVECONTAMINATION RESEARCH -- 1. Introduction -- 2. Public Exposure Limits and the Necessary Detection Sensitivity -- 3. Low-Level Gamma Spectroscopy -- 3.1. The Passive Shield -- 3.2. The Effects of Radon -- 3.3. Cosmic Rays -- 4. Basic Principles of Coincidence/Anticoincidence Counting -- 5. Coincidence Circuits -- 6. The Compton Suppressor Method -- 6.1. The NaI(Tl) Shielded HPGe Spectrometer Inside Passive Iron Shield(Department of Physics, University Of Novi Sad) -- 7. The Anti-muon Veto -- 7.1. The Actively Shielded Ge Spectrometer by a System of Plastic VetoDetector around a Passive Lead Shield (Department of Physics,University of Novi Sad) -- 7.2. Neutron Induced Gamma Lines -- 7.3. Changes in the Active Veto Shield in Order to Improve It -- 8. Analysis of the Actively Shielded Systems. | |
8.1. Commissariat A l'Energie Atomique, DRIF/DASE/RCE, Centre d'EtudesDe Bruyeres-Le-Chatel, B.P. 12, 91680 Bruyeres-Le-Chatel, France [Po96]. -- 8.2. Laboratory of the Faculty of Physics, University of Seville [Hu06] -- 8.3. Laboratory of the University of Mokwon, Doandong Seo-Ku, Daejon302-729, South Korea [By03] -- 8.4. Laboratory of Inorganic and Nuclear Chemistry, New York StateDepartment of Health, Empire State Plaza, Albany, NY 12201-0509,USA [Se02] -- 8.5. IAEA-MEL (International Atomic Energy Agency, Marine EnvironmentLaboratory), 4, Quai Antoine 1er, Monte-Carlo, MC 98000, Monaco [Po05] -- References -- Chapter 4ESCAPING RADIOACTIVITY FROM COAL-FIREDPOWER PLANTS -- Abstract -- 1. Introduction -- 2. Radioactivity of Coals and Fly Ashes -- 3. Particulate Dispersion of Fly Ash -- 4. Radioactivity Escaping from Coal-Fired Power Plants as FineParticles -- 5. Hazards from the Radioactivity Escaping from the Stacks ofCoal-Fired Power Plants -- 5.1. Hazards from the Escaping Fly Ash -- 5.2. Hazards from the Atmospheric Dispersion of Fly Ash -- 5.3. Hazards from Wall Radioactivity in Dwellings due to the Fly Ash -- 5.4. Hazards from Diffusion of Radon through Concrete -- 6. Conclusions -- References -- Chapter 5PATTERN RECOGNITION METHODSIN ENVIRONMENTAL RADIOACTIVITY STUDIES -- Abstract -- 1. Introduction -- 2. Multivariate Analysis Methods -- 2.1. Artificial Neural Network with Back-Propagation Learning -- 2.2. Principal Component Analysis -- 2.3. Linear Discriminant Analysis -- 2.4. K -Nearest Neighbour Algorithm -- 2.5. Soft Independent Modelling of Class Analogy -- 3. Recent Applications of Pattern Recognition Methodsin Environmental Monitoring Studies -- 3.1. Optimization of Gamma-Ray Spectrometric Measurements -- 3.1.1. Optimization of Measuring Uncertainty -- 3.1.2. Optimization of Peak-to-Background Ratio. | |
3.1.3. Optimization of Minimum Detectable Activity -- 3.2. Classification of Samples in Environmental Studies -- 3.2.1. Classification of Soil Samples According to Their Geographic Origin UsingDifferent Pattern Recognition Techniques -- 3.2.2. Implementation of Neural Networks for Classification of Moss and LichenSamples on the Basis of Gamma-Ray Spectrometric Analysis -- Conclusion -- Acknowledgments -- References -- Chapter 6ENVIRONMENTAL BEHAVIOUROF URANIUM IN CLOSEDMINING SITES -- Summary -- 1. Introduction -- 1.1. General -- 1.2. Scope -- 2. Abandoned Uranium Mining Site -- 2.1. Ore Mining and Processing -- 2.1.1. Ore Extraction -- 2.1.2. Uranium Processing -- 2.2. Characteristics of Abandoned Uranium Mines -- 2.2.1. Mining Wastes and Tailing -- 2.2.2. Mine Water Quality -- 2.2.3. Radon Gas Emanation and Air Quality -- 2.2.4. Acid Mine Drainage -- 2.2.5. Aquifer Contamination from In-Situ Leaching -- 3. Geochemistry -- 3.1. General Properties -- 3.1.1. Physicochemical -- 3.1.2. Radioactivity -- 3.1.3. Uranium Classifications -- 3.2. Aquatic Chemistry of Uranium -- 3.2.1. Behaviour in Surface Mine Waters -- 3.2.2. Uranium Behaviour in Oxidising Aquifers -- 3.2.3. Uranium Behaviour in Reducing Aquifer -- 3.2.3. Uranium in Waste-Rocks And Tailings Heaps -- 4. Ecotoxicology -- 4.1. Hazard Transfer from Abandoned Uranium Mines -- 4.2. Human Health Concerns -- 4.2.1. Exposure Routes -- 4.2.2. Chemical Toxicity -- 4.2.3. Radiological Toxicity -- 4.4. Ecotoxicological Approach -- 5. Uranium Bioremediation2 -- 5.1. Processes of Uranium Bioremediation -- 5.1.1. Biosorption -- 5.1.2. Bioprecipitation -- 5.1.3. Chelation -- 5.1.4. Active Intracellular Uptake -- 5.1.5. Biological-Induced Redox Reactions -- 5.1.6. Phytoremediation -- 5.1.7. Biogenic Facilitated Abiogenic Reduction of Uranium. | |
5.2. Applicable Bioremediation Strategies in Abandoned Uranium Mines -- 5.2.1. Constructed Wetlands -- 5.2.2. Injection Wells -- 5.2.3. Bioreactive Barrier -- 5.3. Challenges in Application of Bioremediation in AUM -- 5.3.1. Stoichiometry and Homeostasis Limits -- 5.3.2. Environmental Condition Limits -- 5.3.3. Discharge Pattern Limits -- 5.3.4. Ecological Implication Fears -- 5.3.5. Physicochemical Characteristics Limits -- 5.3.6. Processes and Counteraction Limits -- 5.5. New Perspectives: A Paradigm of the Eco-Remediation -- 6. Concluding Remarks -- Acknowledgements -- References -- Chapter7MODELLINGRADIOACTIVITYDISPERSIONINCOASTALWATERS -- Abstract -- 1.Introduction -- 2.TheStraitofGibraltar-Albor´anSeaRegion -- 3.RapidResponseRadioactivityDispersionModelfortheStraitofGibraltar -- 3.1.Hydrodynamics -- 3.2.LagrangianDispersionModel -- 3.3.ResultsandDiscussion -- 3.3.1.Hydrodynamics -- 3.3.2.DispersionModel -- 4.AModellingStudyonRadionuclideDynamicsintheAlbor´anSea -- 4.1.Hydrodynamics -- 4.2.SedimentTransport -- 4.3.RadionuclideDispersionina2-layeredSea -- 4.4.ComputationalScheme -- 4.5.ResultsandDiscussion -- 4.5.1.Hydrodynamics -- 4.5.2.Sedimentation -- 4.5.3.RadionuclideDispersion -- 4.5.4.SensitivityTests -- 5.Conclusion -- References -- Chapter 8NATURAL RADIOACTIVITY AND RADIOACTIVECONTAMINATION IN SEA WATER -- Abstract -- Introduction -- Experimental -- Results -- Conclusion -- Acknowledgements -- References -- INDEX -- Blank Page. | |
Titolo autorizzato: | Radioactive contamination research developments |
ISBN: | 1-61122-566-3 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910810482703321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |