Vai al contenuto principale della pagina

Semiclassical analysis, Witten Laplacians, and statistical mechanics [[electronic resource] /] / Bernard Helffer



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Helffer Bernard Visualizza persona
Titolo: Semiclassical analysis, Witten Laplacians, and statistical mechanics [[electronic resource] /] / Bernard Helffer Visualizza cluster
Pubblicazione: River Edge, NJ, : World Scientific, c2002
Descrizione fisica: 1 online resource (190 p.)
Disciplina: 530.13
Soggetto topico: Statistical mechanics
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references (p. 169-176) and index.
Nota di contenuto: Contents ; Preface ; Chapter 1 Introduction ; 1.1 Laplace integrals ; 1.2 The problems in statistical mechanics ; 1.3 Semi-classical analysis and transfer operators ; 1.4 About the contents ; Chapter 2 Witten Laplacians approach ; 2.1 De Rham Complex ; 2.2 Witten Complex
2.3 Witten Laplacians 2.4 Semi-classical considerations ; 2.5 An alternative point of view : Dirichlet forms ; 2.6 A nice formula for the covariance ; 2.7 Notes ; Chapter 3 Problems in statistical mechanics with discrete spins ; 3.1 The Curie-Weiss model ; 3.2 The 1-d Ising model
3.3 The 2-d Ising model 3.4 Notes ; Chapter 4 Laplace integrals and transfer operators ; 4.1 Introduction ; 4.2 Classical Laplace method ; 4.2.1 Standard results ; 4.2.2 Transition between the convex case and the double well case ; 4.3 The method of transfer operators
4.4 Elementary properties of operators with integral kernels 4.5 Elementary properties of the transfer operator ; 4.6 Operators with strictly positive kernel and application ; 4.7 Thermodynamic limit ; 4.8 Mean value ; 4.9 Pair correlation ; 4.10 2-dimensional lattices ; 4.11 Notes
Chapter 5 Semi-classical analysis for the transfer operators 5.1 Introduction ; 5.2 Explicit computations for the harmonic Kac operator ; 5.3 Harmonic approximation for the transfer operator ; 5.4 WKB constructions for the transfer operator
5.5 The case of the Schrodinger operator in dimension 1
Sommario/riassunto: This important book explains how the technique of Witten Laplacians may be useful in statistical mechanics. It considers the problem of analyzing the decay of correlations, after presenting its origin in statistical mechanics. In addition, it compares the Witten Laplacian approach with other techniques, such as the transfer matrix approach and its semiclassical analysis. The author concludes by providing a complete proof of the uniform Log-Sobolev inequality. <br><i>Contents:</i><ul><li>Witten Laplacians Approach</li><li>Problems in Statistical Mechanics with Discrete Spins</li><li>Laplace In
Titolo autorizzato: Semiclassical analysis, Witten Laplacians, and statistical mechanics  Visualizza cluster
ISBN: 981-277-689-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910784502303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Series on partial differential equations and applications ; ; v. 1.