Vai al contenuto principale della pagina

Nano-strategies for addressing antimicrobial resistance : nano-diagnostics, nano-carriers, and nano-antimicrobials / / edited by Vinay Kumar [and three others]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Nano-strategies for addressing antimicrobial resistance : nano-diagnostics, nano-carriers, and nano-antimicrobials / / edited by Vinay Kumar [and three others] Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2022]
©2022
Descrizione fisica: 1 online resource (418 pages)
Disciplina: 170
Soggetto topico: Biotechnology
Persona (resp. second.): KumarVinay
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Intro -- Preface -- Contents -- About the Editors -- Chapter 1: The History of Antibiotics Illumes the Future of Antimicrobial Peptides Administered Through Nanosystems -- 1.1 Introduction -- 1.2 Antibiotics: Key Events from Prehistory to the Golden Age -- 1.3 Antibiotic Resistance: Health Crisis and Solutions -- 1.4 Antimicrobial Peptides (AMPs): Conception and History -- 1.5 Diversification, Structural Characterisation and Mechanisms of Action of AMPs -- 1.5.1 Alpha-Helical AMPs -- 1.5.2 Beta-Sheet AMPs -- 1.5.3 Loop AMPS -- 1.5.4 Extended AMPs -- 1.6 Immunomodulatory Signalling of AMPs -- 1.7 Bacterial Resistance to AMPs -- 1.7.1 Extracellular Mechanisms of Resistance -- 1.7.2 Alterations of Cell Wall and Membrane Mechanism -- 1.7.3 Efflux Mechanism -- 1.7.4 Biofilms -- 1.8 De Novo Designed AMPs as Potential Therapeutics -- 1.9 Summary of the Current Knowledge on Antimicrobials Primes a Promising Upshot of Nanotechnology -- 1.10 Drug Delivery System Strategies for AMPs -- 1.11 Nano-drug Delivery Systems for AMPs -- 1.11.1 Inorganic Nanomaterial: Metal Nanoparticles (MNPs) -- 1.11.2 Hydrogel-Based Nanoparticles: Nanogels -- 1.11.2.1 Nanogels -- 1.11.3 Lipid-Based Nanomaterials: Nanoliposomes and Nano-micelles -- 1.11.4 Inorganic Polymer-Based Nanomaterial: Nanofibres -- 1.11.5 Organic Polymer-Based Nanomaterials: Self-Assembled Peptides -- 1.12 Conclusions -- References -- Chapter 2: Current Approaches and Prospects of Nanomaterials in Rapid Diagnosis of Antimicrobial Resistance -- 2.1 Introduction -- 2.2 Current Diagnostic Tools for AST and AMR -- 2.2.1 Phenotypic Methods -- 2.2.1.1 Automated Phenotypic AST Systems -- 2.2.2 Genotypic Methods -- 2.2.2.1 PCR-Based Techniques -- 2.2.2.2 Isothermal Amplification-Based Techniques -- 2.2.2.3 Automated Genotypic Methods -- 2.2.3 Sequencing-Based Approaches -- 2.2.3.1 Whole-Genome Sequencing.
2.2.3.2 Next-Generation Sequencing -- 2.3 Nano-biosensors for Rapid Detection of Antimicrobial Resistance -- 2.3.1 Optical Nano-biosensors for the Rapid AMR/AST Detection -- 2.3.1.1 Colorimetric Nano-biosensors -- 2.3.1.2 Fluorometric Nano-biosensors -- 2.3.2 Electrochemical Nano-biosensors -- 2.4 Challenges and Future Prospects -- 2.5 Concluding Remarks -- References -- Chapter 3: Nanomaterial-Mediated Delivery of Antimicrobial Agents: 'The Nanocarriers' -- 3.1 Introduction -- 3.2 Nanocarriers as Emerging Drug Delivery Systems -- 3.3 Types of Nanocarriers -- 3.3.1 Metal-Based -- 3.3.1.1 Silver Nanoparticles (AgNPs) -- 3.3.1.2 Gold Nanoparticles (AuNPs) -- 3.3.1.3 Ceramic Nanoparticles -- 3.3.1.4 Silica Nanoparticles -- 3.3.2 Liposome-Based -- 3.3.3 Quantum Dots (QDs) -- 3.3.4 Biopolymeric Nanomaterials -- 3.3.5 Dendrimers -- 3.3.6 Photothermally Activated Nanomaterials (PANs) -- 3.3.7 Carbon-Based Nanomaterials -- 3.3.7.1 Graphene-Based Nanomaterials -- 3.3.7.2 Carbon Nanotubes (CNTs) -- 3.3.7.3 Fullerenes -- 3.3.7.4 Carbon-Based Nanodots -- 3.3.7.5 Carbon Nitride Nanomaterials -- 3.4 Antimicrobial Agents and Their Inhibitory Mechanisms -- 3.4.1 Antibiotics -- 3.4.2 Antimicrobial Peptides (AMPs) -- 3.4.3 Phytochemicals -- 3.4.4 Metals, Metal-Based Complexes and Metallic Nanoparticles -- 3.5 Nanomaterial-Based Antimicrobial Delivery Targeting Drug-Resistant Determinants -- 3.5.1 Bacterial Cell Membrane -- 3.5.2 Biofilms -- 3.5.3 Efflux Pumps (EPs) -- 3.5.4 Quorum Sensing -- 3.6 Conclusion and Future Perspectives -- References -- Chapter 4: Nanoparticle Functionalization: Approaches and Applications -- 4.1 Introduction -- 4.2 Nanoparticle Functionalization -- 4.3 Approaches to Functionalization -- 4.3.1 Non-covalent Conjugation -- 4.3.2 Covalent Conjugation -- 4.3.3 Use of Linker Molecules -- 4.4 Hybrid Nanoparticles -- 4.4.1 Metal Organic Framework.
4.4.2 Mesoporous Silica Nanoparticles -- 4.4.3 Conjugation of NPs with Organic Molecules -- 4.5 Applications of the Functionalized Nanomaterials -- 4.5.1 Drug Delivery -- 4.5.2 Tissue Engineering -- 4.5.3 Antimicrobial Resistance -- 4.5.4 Molecular Imaging -- 4.5.5 Biosensors -- 4.6 Conclusion -- References -- Chapter 5: Nano-adjuvants as Effective Next-Generation Antimicrobial Agents -- 5.1 Introduction -- 5.2 Nano-adjuvants Against Microbes -- 5.2.1 Carbohydrate-Based Adjuvants -- 5.2.2 Gold-Based Nanoparticle Adjuvant -- 5.2.3 Zinc-Based Nanoparticle Adjuvant -- 5.3 Conclusion -- References -- Chapter 6: Limiting Antibiotic-Resistant Bacteria Using Multifunctional Nanomaterials -- 6.1 Introduction -- 6.2 Mechanism Underlying Antibiotic Resistance in Microbes -- 6.2.1 Competition to Antibiotics and Resistance to Persister -- 6.2.2 Low Drug Uptake and High Efflux -- 6.2.3 Biofilm Formation -- 6.2.4 Antibiotic Modification -- 6.2.5 Swarming -- 6.3 Nanotechnology-Mediated Strategies to Overcome MDR in Microbes -- 6.3.1 Nitric Oxide-Releasing Nanomaterials -- 6.3.2 Metal-Based Nanoparticles -- 6.3.2.1 Titanium Dioxide Nanoparticles -- 6.3.2.2 Zinc Oxide Nanoparticles -- 6.3.2.3 Silver Nanoparticles -- 6.3.2.4 Copper Oxide Nanoparticles -- 6.3.2.5 Bismuth Nanoparticles -- 6.3.2.6 Graphene-Based Nanomaterials -- 6.3.2.7 Bimetallic Nanomaterials -- 6.3.2.8 Silica Nanoparticles and Their Derivatives -- 6.3.2.9 Iron Oxide Nanoparticles -- 6.3.3 Chitosan-Based Nanomaterials -- 6.3.4 Aptamer-Conjugated Nanoparticles -- 6.4 Use of Nanomaterials in Combating Bacterial Diseases of Animals -- 6.4.1 Brucellosis -- 6.4.2 Septicemia -- 6.4.3 Mastitis -- 6.4.4 Listeriosis -- 6.4.5 Salmonellosis -- 6.4.6 Bovine Tuberculosis -- 6.4.7 Anthrax -- 6.5 Nanoparticle-Based Antibacterial Strategies in Clinical Studies -- 6.5.1 Nanoparticles Delivering Antibiotics.
6.5.2 Nanoparticle Delivering Antimicrobial Peptides and Antitoxins -- 6.5.3 Limitations of Nanoparticle-Based Antibacterial Agents -- 6.6 Conclusion and Expected Future Developments -- References -- Chapter 7: Microbial Resistance Mechanisms and Potential of Metal-Organic Framework in Mitigation Thereof -- 7.1 Introduction -- 7.2 Antimicrobial Agents -- 7.3 Resistance Mechanisms -- 7.3.1 Mutation in Antibacterial Target -- 7.3.2 Reduction in Drug Uptake -- 7.3.3 Drug Inactivation -- 7.3.4 Efflux Pumps -- 7.4 Current Approaches to Mitigate AMR -- 7.5 Metal-Organic Frameworks -- 7.6 Physicochemical Properties Lending Antimicrobial Effect to MOFs -- 7.6.1 MOF as Antimicrobial Drug Delivery System -- 7.6.1.1 Small Molecular Antibiotics -- 7.6.1.2 Inorganic Active Agents -- 7.6.1.3 Biomolecules -- 7.6.2 MOF Itself as Antimicrobial -- 7.6.2.1 Disruption of Cell Membrane Integrity -- 7.6.2.2 Generation of Reactive Species and Photodynamic Effect -- 7.6.2.3 Intracellular Release of Disruptors -- 7.7 Future Perspectives of MOF as Antimicrobial -- References -- Chapter 8: Silver-Based Nano-formulations for Treating Antibiotic-Resistant Microbial Strains -- 8.1 Introduction -- 8.2 Colloidal Nano-silver Formulations -- 8.3 Silver Nanocomposites as Antimicrobials -- 8.4 Conclusions -- References -- Chapter 9: Gold Nanoparticles: A Lethal Nanoweapon Against Multidrug-Resistant Bacteria -- 9.1 Introduction -- 9.2 Different Types of AuNPs -- 9.2.1 Au Nanospheres -- 9.2.2 Au Nanorods -- 9.2.3 Au Nanocages -- 9.2.4 Au Nanoshells -- 9.2.5 Au Nanostars -- 9.3 Antibacterial Activity of AuNPs -- 9.3.1 Antibacterial Activity Against Pathogenic Bacteria -- 9.3.2 Antibacterial Activity Against Multidrug-Resistant (MDR) Bacteria -- 9.4 Mechanism of Antibacterial Activity of Au Nanoparticles -- 9.5 Biocompatibility of Au Nanoparticles.
9.6 Conclusions and Future Perspectives -- References -- Chapter 10: Antimicrobial Potentials of Zinc and Iron Oxide Nanoparticles -- 10.1 Introduction -- 10.2 Emergence of Nanomaterials as Effecting Antimicrobial Agents -- 10.3 Antimicrobial Potencies of Zinc/Zinc Oxide Nanoparticles (ZnO NPs) Against Drug-Resistant Microbes (Fig. 10.1) -- 10.4 Antimicrobial Potencies of Iron/Iron Oxide Nanoparticles (IONPs) Against Drug-Resistant Microbes (Fig. 10.2) -- 10.5 Mode of Action of ZnO NPs and IONPs Against Drug-Resistant Microbes -- 10.6 Conclusion and Future Outlook -- References -- Chapter 11: Carbon Nanostructures for Fighting Antimicrobial Resistant Bacteria -- 11.1 Introduction -- 11.2 Antimicrobial Resistant Bacteria: A Global Concern -- 11.3 Antimicrobial Resistance Mechanism -- 11.4 Inactivation or Changes in Drug -- 11.5 Modification of the Active Site or the Receptor -- 11.6 Alteration in Permeability of Cell Which Results in Reduced Deposition of Drug Within Cell -- 11.7 Biofilm Formation -- 11.8 Carbon Nanotubes and Its Antimicrobial Properties -- 11.9 Synthesis of CNTs -- 11.10 Antimicrobial Properties of CNT and CNT Composites -- 11.11 Conclusions and Future Aspects -- References -- Chapter 12: Nanoformulations Against Multidrug-Resistant Members of ESKAPE Pathogens -- 12.1 Introduction -- 12.2 ESKAPE Pathogens and Evolution of Their Resistance Mechanisms -- 12.2.1 Vancomycin-Resistant Enterococcus faecium (VREfm) -- 12.2.2 Methicillin-Resistant Staphylococcus aureus (MRSA) -- 12.2.3 Klebsiella pneumoniae -- 12.2.4 Acinetobacter baumannii -- 12.2.5 Pseudomonas aeruginosa -- 12.2.6 Enterobacter spp. -- 12.3 Nanoformulations as an Emerging Combating Tool Against ESKAPE Pathogens -- 12.4 Nanoformulation-Based Drug Delivery to Drug Resistance Determinant in ESKAPE -- 12.4.1 Cell Wall, Cell Membrane, and Membrane Permeabilization.
12.4.2 Biofilm Formation.
Titolo autorizzato: Nano-strategies for addressing antimicrobial resistance  Visualizza cluster
ISBN: 3-031-10220-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910635398403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Nanotechnology in the Life Sciences