Vai al contenuto principale della pagina

Deep Generative Models : Second MICCAI Workshop, DGM4MICCAI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings / / edited by Anirban Mukhopadhyay, Ilkay Oksuz, Sandy Engelhardt, Dajiang Zhu, Yixuan Yuan



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Deep Generative Models : Second MICCAI Workshop, DGM4MICCAI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings / / edited by Anirban Mukhopadhyay, Ilkay Oksuz, Sandy Engelhardt, Dajiang Zhu, Yixuan Yuan Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2022
Edizione: 1st ed. 2022.
Descrizione fisica: 1 online resource (136 pages)
Disciplina: 006.37
006.31
Soggetto topico: Computer vision
Machine learning
Education - Data processing
Application software
Computer Vision
Machine Learning
Computers and Education
Computer and Information Systems Applications
Persona (resp. second.): MukhopadhyayAnirban
Nota di bibliografia: Includes bibliographical references and index.
Sommario/riassunto: This book constitutes the refereed proceedings of the Second MICCAI Workshop on Deep Generative Models, DG4MICCAI 2022, held in conjunction with MICCAI 2022, in September 2022. The workshops took place in Singapore. DG4MICCAI 2022 accepted 12 papers from the 15 submissions received. The workshop focusses on recent algorithmic developments, new results, and promising future directions in Deep Generative Models. Deep generative models such as Generative Adversarial Network (GAN) and Variational Auto-Encoder (VAE) are currently receiving widespread attention from not only the computer vision and machine learning communities, but also in the MIC and CAI community.
Titolo autorizzato: Deep generative models  Visualizza cluster
ISBN: 9783031185762
3031185765
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910616390203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Computer Science, . 1611-3349 ; ; 13609