Vai al contenuto principale della pagina

Molecular photoswitches : chemistry, properties, and applications / / edited by Zbigniew L. Pianowski



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Molecular photoswitches : chemistry, properties, and applications / / edited by Zbigniew L. Pianowski Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : John Wiley & Sons, , [2022]
©2022
Descrizione fisica: 1 online resource (1148 pages)
Disciplina: 660.6
Soggetto topico: Optical detectors
Nanocrystals
Molecular machinery
Persona (resp. second.): PianowskiZbigniew L
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Part I Interplay of Light and Matter -- Chapter 1 Physicochemical Aspects of Photoswitching -- 1.1 Introduction -- 1.2 Essentials of Photophysics -- 1.2.1 Quantum Yield -- 1.2.2 Photostationary State -- 1.2.3 Photoactivation -- 1.3 Spectroscopy of Photoswitching -- 1.4 Two Case Examples -- 1.4.1 Diarylethenes -- 1.4.2 Azobenzene and Its Derivatives -- References -- Chapter 2 Computational Methods and Photochromism -- 2.1 Introduction -- 2.2 Basics of Computational Photochemistry -- 2.2.1 Electronic Structure Methods -- 2.2.2 Photochemical Pathway and Conical Intersections -- 2.3 Applications: Photoswitching Mechanisms of Photochromic Compounds -- 2.3.1 Dihydroazulene Photochromism -- 2.3.2 Dihydropyrene Photochromism -- 2.4 Conclusions and Perspectives -- References -- Part II Chemical Classes of Molecular Photoswitches -- Chapter 3 Azobenzenes: The Quest for Visible Light Triggering -- 3.1 Introduction -- 3.1.1 Azobenzene and Its Physical Characteristics -- 3.2 Synthesis of Azobenzenes -- 3.2.1 Synthesis of Symmetrical Azobenzenes by Oxidation of Anilines -- 3.2.2 Azo Coupling -- 3.2.3 Mills Reaction -- 3.2.4 Modern Methods -- 3.3 Visible Light‐Activated Azobenzenes as Photoswitches -- 3.3.1 The Effect of Electron‐Donating Groups on Direct Photoexcitation -- 3.3.2 The Effect of Electron‐Withdrawing Groups on Direct Photoexcitation -- 3.3.3 Further Modification Leading to Visible Light Photoswitches -- 3.3.4 Complex Molecular and Supramolecular Systems Containing Azobenzenes -- 3.4 Applications of Azobenzenes in Biological Systems -- 3.5 Conclusion -- References -- Chapter 4 Diazocines: Photoswitches with Excellent Photophysical Properties and Inverted Stabilities -- 4.1 Photophysical Properties and Conformations of Parent Diazocine -- 4.2 Synthesis of Diazocines.
4.3 Heteroatom‐Bridged Diazocines -- 4.4 Applications of Diazocines -- 4.5 Conclusion -- Acknowledgments -- References -- Chapter 5 Azoheteroarenes -- 5.1 Introduction -- 5.2 Synthetic Strategies Toward Azoheteroarenes -- 5.3 Structure-Property Relationships -- 5.3.1 Conformational Effects on Thermal Half‐Life and n-π* Oscillator Strength -- 5.3.2 Choice of Heterocycle -- 5.3.3 6‐Membered Heterocycles -- 5.3.4 5‐Membered Heterocycles -- 5.3.5 Fused Heterocycles -- 5.3.6 External Influences -- 5.4 Photopharmacological Applications -- 5.4.1 Photoswitchable CENP‐E Inhibitor -- 5.4.2 Photoswitchable Ligands for a TRPA1 Chemo‐Optogenetic System -- 5.4.3 Further Pharmacological Applications of Azoheteroarenes -- 5.4.4 Glutathione Stability -- 5.5 Materials for Electronic Applications -- 5.5.1 Information Transfer -- 5.5.2 Switching in the Solid State -- 5.6 Azoheteroarenes in Supramolecular Chemistry -- 5.6.1 Modulation of Host-Guest Behavior -- 5.6.2 Photoswitchable Ligands -- 5.7 Energy‐Storage Materials -- 5.8 Final Remarks -- References -- Chapter 6 Arylhydrazones -- 6.1 Introduction -- 6.2 Acetyl/Aroyl‐Based and Pyridyl‐Based Photochromic Arylhydrazones -- 6.3 Phenylacetate‐Based Photochromic Arylhydrazones -- 6.4 Applications of Bistable Photochromic Hydrazones -- 6.4.1 Kinetic Trapping of Nanostructures -- 6.4.1.1 Liquid Crystal‐Based Smart Window -- 6.4.1.2 Shape‐Persistent Photoactuator -- 6.4.1.3 Photoresponsive Drug Release -- 6.4.2 Switching on Metal Surfaces -- 6.5 Conclusion -- References -- Chapter 7 Spiropyran - Multifaceted Chromic Compounds -- 7.1 Introduction -- 7.2 Thermochromic Spiropyrans -- 7.3 Relative Stability of the Merocyanine Isomers -- 7.4 Photochromic Properties -- 7.5 Fluorescence -- 7.6 Acidochromism -- 7.7 Redox‐Properties of Spiropyrans -- 7.8 Photochemistry in the Solid State -- 7.9 Conclusions -- Acknowledgments.
References -- Chapter 8 Diarylethenes - Molecules with Good Memory -- 8.1 Introduction -- 8.2 Photochemical Behavior of Diarylethenes -- 8.3 Distinctive Properties of Diarylethene Photoswitches -- 8.3.1 Thermal Stability of the Photoforms -- 8.3.2 Photofatigue Resistance and Chemical Stability -- 8.3.3 Molecular Geometry and Electronic Changes Upon Photoisomerization -- 8.4 Synthesis of Diarylethenes -- 8.5 Conclusions and Outlook -- References -- Chapter 9 Fulgides and Fulgimides -- 9.1 Introduction -- 9.2 Photoswitching Properties -- 9.3 Synthesis -- 9.4 Effects of Chemical Structure -- 9.5 Ultrafast Photoswitching Dynamics -- 9.5.1 Photoisomerization Mechanism -- 9.5.2 Tuning by Chemical Structure -- 9.5.3 Implications for New Derivatives -- 9.6 Application Examples -- 9.7 Conclusions -- References -- Chapter 10 The Negative Photochromism of Dimethyldihydropyrene π‐Switches -- 10.1 The Genesis -- 10.2 DHP as a Probe for Measuring Aromaticity -- 10.3 DHP as a Photoswitch -- 10.4 DHP as a "π‐Switch": Switching of Electrical Conductivity -- 10.5 DHP with Non‐methyl Internal Groups: The New‐Generation Switches -- 10.6 Multistate Systems with DHP and All‐Photonic Molecular Logic Gates -- 10.7 DHP Photoswitches Having Metal Ions -- 10.8 Light‐Triggered Molecular Recognition -- 10.9 Multi‐addressable Switches: Proton‐Triggered -- 10.10 Electrochemically Triggered -- 10.11 Effect of Fluorescent Moieties on the Switching -- 10.12 Fatigue Resistance Through Encapsulation -- 10.13 Cooperative Photoswitching -- References -- Chapter 11 Chiroptical Molecular Switches and Motors -- 11.1 Introduction -- 11.2 From Helical Overcrowded Alkenes to Unidirectional Rotary Molecular Motors -- 11.2.1 Chiroptical Molecular Switches -- 11.2.2 First‐ and Second‐Generation Molecular Motors -- 11.2.3 Fundamental Rotational Steps.
11.2.4 Third‐Generation Rotary Molecular Motors -- 11.3 Dynamics and Kinetics of Molecular Motors -- 11.3.1 Thermal Isomerization -- 11.3.2 Tuning the Speed of Rotation -- 11.3.3 Photoisomerization -- 11.3.4 Tuning the Absorption Wavelength -- 11.3.5 Photochemical Motors -- 11.3.6 Novel Motor Core Designs -- 11.4 Applications -- 11.4.1 Transfer of Chirality -- 11.4.2 Transfer of Motion -- 11.4.2.1 Coupled Rotary Systems -- 11.4.2.2 Translation of Motion -- 11.4.2.3 Control Over Motion -- 11.4.3 Biological Applications -- 11.4.4 Other Applications -- 11.5 Perspective and Outlook -- References -- Chapter 12 Stilbenes Revisited: Understanding the Mechanism of Mechanochemical Coupling -- 12.1 Introduction -- 12.2 Stiff Stilbene as a Molecular Force Probe -- 12.2.1 Introduction to Polymer Mechanochemistry -- 12.2.2 The Importance of Model Studies in Polymer Mechanochemistry -- 12.2.3 Stiff Stilbene Is an Effective Molecular Force Probe -- 12.2.4 How Intrinsic Mechanochemical Reactivity Is Measured with Stiff Stilbene -- 12.2.5 How Stiff Stilbene Advanced Our Understanding of Mechanochemistry -- 12.2.5.1 The Restoring Force of a Stretched Monomer Predicts Its Reactivity Independent of How the Force Is Generated -- 12.2.5.2 Experimental Validation of a Simple Model of Mechanochemical Kinetics Over Complex Energy Landscapes -- 12.2.5.3 The Diversity of Force-Reactivity Relationships -- 12.3 Stilbenes in Fundamental Studies of Energy Transduction by Molecular Motors -- 12.3.1 Introduction to Molecular Machines -- 12.3.2 Minimalist Design of a Molecular Rotor Realized Using Stilbenes -- 12.4 Summary -- References -- Chapter 13 Indigoid Photoswitches -- 13.1 Indigo -- 13.2 Thioindigo -- 13.3 Hemiindigo -- 13.4 Hemithioindigo -- 13.5 Iminothioindoxyls -- 13.6 Oxindoles and Isoindolinones -- References -- Chapter 14 Donor-Acceptor Stenhouse Adducts.
14.1 Introduction -- 14.2 DASA Synthesis -- 14.2.1 Molecular Photoswitch -- 14.2.2 Photoswitches in Macromolecules -- 14.3 Photoswitching Properties -- 14.3.1 Mechanism -- 14.3.2 The Absorption Properties -- 14.3.3 Dark Equilibria -- 14.3.4 Cyclization Efficiency Under Illumination -- 14.3.5 Electronic Effects -- 14.3.6 Steric Effects -- 14.3.7 Solvent Effects -- 14.3.8 Concentration Effects -- 14.3.9 Cyclization Under Exclusion of Light -- 14.3.10 Role of Water and Substituents on Cyclization and Ring Opening -- 14.4 Illustrative Applications -- 14.4.1 Polarity Change -- 14.4.2 Wavelength Selectivity -- 14.4.3 Sensing -- 14.4.4 Photothermal -- 14.5 Conclusion -- References -- Chapter 15 Imines as Threefold Functional Devices: Motional, Photochemical, Constitutional -- 15.1 Introduction -- 15.2 Imine Photoswitches -- 15.2.1 Electronic Spectra and Photochemical E/Z‐Isomerization of Imines -- 15.2.2 Thermal E/Z‐Isomerization of Imines -- 15.2.3 Imines as Photoswitches -- 15.2.4 Imines as Light‐Driven Molecular Motors -- 15.3 Acylhydrazone and Hydrazone Photoswitches -- 15.3.1 The Triple Dynamics of Imine‐Based Photoswitches -- 15.3.2 The Consequences of Pyridyl‐Hydrazones Shape Switching -- 15.3.2.1 Photo‐Responsive Receptor -- 15.3.2.2 Switchable Catalysis -- 15.3.2.3 Control of Supramolecular Polymerization -- 15.3.2.4 The Dynamics of Molecular Movements -- 15.3.2.5 Adaptation -- 15.3.3 Constitutional Dynamic Networks -- 15.3.3.1 Photoswitching of Constitutional Dynamic Networks -- 15.3.3.2 Photoswitching in Dynamic Covalent Chemistry: The Photodynamic Covalent Bond -- 15.4 Conclusion -- References -- Chapter 16 Norbornadiene/Quadricyclane (NBD/QC) and Conversion of Solar Energy -- 16.1 Introduction -- 16.2 Synthesis -- 16.2.1 Norbornadiene (NBD) -- 16.2.2 Quadricyclane (QC).
16.3 Molecular Engineering of the Norbornadiene/Quadricyclane Photoswitch Toward MOST Application.
Titolo autorizzato: Molecular photoswitches  Visualizza cluster
ISBN: 3-527-82762-5
3-527-82760-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910580253403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui