Vai al contenuto principale della pagina
Titolo: | Analog circuits for machine learning, current/voltage/temperature sensors, and high-speed communication : advances in analog circuit design 2021 / / Pieter Harpe, Kofi A. A. Makinwa and Andrea Baschirotto, editors |
Pubblicazione: | Cham, Switzerland : , : Springer, , [2022] |
©2022 | |
Descrizione fisica: | 1 online resource (351 pages) |
Disciplina: | 006.31 |
Soggetto topico: | Machine learning |
Analog integrated circuits | |
Analog integrated circuits - Design and construction | |
Persona (resp. second.): | HarpePieter |
MakinwaKofi A. A. | |
BaschirottoA (Andrea) | |
Note generali: | Includes index. |
Nota di contenuto: | Intro -- Preface -- The Topics Covered Before in this Series -- Contents -- Part I Analog Circuits for Machine Learning -- 1 Mixed-Signal Compute and Memory Fabrics for Deep Neural Networks -- 1 Introduction -- 2 Efficiency Limits of Digital DNN Accelerators -- 3 Analog and Mixed-Signal Computing -- 4 In-Memory Computing -- 5 Discussion and Conclusions -- References -- 2 Analog Computation with RRAM and Supporting Circuits -- 1 Introduction -- 2 Analog Crossbar Computation -- 3 Challenges of Crossbar Operation -- 3.1 Device Nonlinearity -- 3.2 Mixed-Signal Peripheral Circuitry -- 4 Non-volatile Crossbar Synapses -- 4.1 Flash -- 4.2 Filamentary Resistive-RAM -- 5 Digital RRAM Crossbar -- 5.1 Analog Operation with Digital RRAM Cells -- 6 Analog RRAM Crossbar -- 6.1 Analog Operation with Analog RRAM Cells -- 6.2 Fully Integrated CMOS-RRAM Analog Crossbar -- 6.2.1 RRAM Programming -- 6.2.2 RRAM Nonlinearity -- 6.2.3 CMOS Prototype -- 6.2.4 Measurement Setup -- 6.2.5 Single-Layer Perceptron Example -- 6.2.6 System Performance -- 7 Conclusions -- References -- 3 Analog In-Memory Computing with SOT-MRAM: Architecture and Circuit Challenges -- 1 Introduction -- 2 Resistive Element Array -- 3 SOT MRAM Memory Element -- 4 SOT MRAM-Based Cell for AiMC -- 5 MVM Result in SOT Array -- 6 Impact of LSB Size on ADC Design -- 6.1 LSB Shrinking on CS SAR DAC -- 6.2 LSB Shrinking on CS SAR Comparator -- 7 Conclusions -- References -- 4 Prospects for Analog Circuits in Deep Networks -- 1 Introduction -- 2 Review of Circuits for Analog Computing -- 3 Analog Circuits for Matrix-Vector Multiplication -- 4 Non-volatile Resistive Crossbars -- 5 Future of Analog Deep Neural Network Architectures -- 5.1 Trends in Machine Learning ASICs -- 6 Conclusion -- References -- 5 SPIRIT: A First Mixed-Signal SNN Using Co-integrated CMOS Neurons and Resistive Synapses. |
1 Introduction -- 2 NVM Technology -- 3 Neural Network Architecture -- 3.1 Building a SNN -- 3.2 Learning Strategy -- 4 Circuit Architecture -- 4.1 Synapse Implementation -- 4.2 Neuron Design -- 4.3 Top Architecture -- 5 Measurement Results -- 5.1 Circuit Validation -- 5.2 Extra Measurements on OxRAMs -- 6 Discussion -- 7 Conclusion -- References -- 6 Accelerated Analog Neuromorphic Computing -- 1 Introduction -- 2 Overview of the bss Neuromorphic Architecture -- 3 The hicannx Chip -- 3.1 Event-Routing Within hicannx -- 3.2 Analog Inference: Rate-Based Extension of hicannx -- 4 Analog Verification of Complex Neuron Circuits -- 4.1 Interfacing Analog Simulations from Python -- 4.2 Monte Carlo Calibration of adex Neuron Circuits -- 5 Conclusion -- Author Contribution -- References -- Part II Current, Voltage, and Temperature Sensors -- 7 Advancements in Current Sensing for Future Automotive Applications -- 1 Introduction -- 2 Current Sensing -- 2.1 Classical Current Sensing -- 2.2 Improvement of Classical Current Sensing -- 2.3 From Linear to Switched Concepts -- 2.4 Current Sensing Goes Digital -- 2.5 Impact to Future Designs -- 3 Conclusions -- References -- 8 Next Generation Current Sense Interfaces for the IoT Era -- 1 Introduction -- 2 Sensing Interfaces for IoT -- 2.1 Current Sensing -- 2.2 Capacitive Sensing -- 2.3 Inductive Sensing -- 2.4 Resistive Sensing -- 3 Multi-sense Interfaces -- 4 Choosing a Current Sensing ADC -- 4.1 Two-Step ADCs -- 4.2 Current Mode Incremental ADC (CI-ADC) -- 5 Incremental Δ Design Considerations -- 5.1 Choosing Both Coarse and Fine ADC Order -- 5.2 Understanding Noise -- 5.3 Incremental Δ Linearity with Passive Integrators -- 5.4 Capacitor Sizing -- 5.5 Decimation Filter -- 6 Multi-Sense with a CI-ADC -- 6.1 Current Sensing with a CI-ADC -- 6.2 Capacitive Sensing with a CI-ADC -- 6.3 Inductive Sensing with a CI-ADC. | |
6.4 Resistive Sensing with a CI-ADC -- 7 Measurement Results -- 7.1 Optical Proximity Results -- 7.2 Capacitance Sensing Results -- 7.3 Inductive Sensing Results -- 7.4 Resistance Sensing -- 8 Conclusions -- References -- 9 Precision Voltage Sensing in Deep Sub-micron and Its Challenges -- 1 ADC Overview -- 1.1 Sampling -- 1.2 Quantisation -- 1.3 Other Noise Sources -- 1.3.1 Aperture Error -- 1.3.2 Thermal Noise -- 1.4 ADC Signal to Noise -- 1.5 Figure of Merits -- 1.5.1 Walden FoM -- 1.5.2 Schreier FoM -- 1.6 Architecture Comparison -- 1.7 Architecture Selection -- 2 SAR ADC Architecture -- 3 Noise-Shaped SAR ADC -- 4 Error Feedback Design Example -- 5 Dynamic Amplifier -- 6 Conclusion -- References -- 10 Breaking Unusual Barriers in Sensor Interfaces: From Minimum Energy to Ultimate Low Cost -- 1 Introduction -- 2 Ultra-Low Power All-Dynamic Multimodal Sensor Interface -- 2.1 Proposed All-Dynamic Versatile Sensing Platform -- 2.2 Low Power All-Dynamic Temperature Sensing -- 2.3 All-Dynamic Capacitance Sensor Interface -- 2.4 All-Dynamic 4-Terminal Resistance Sensor Interface -- 2.5 SAR ADC -- 2.6 Measurement Results -- 3 Ultimate Low-Cost Electronics -- 4 A Printed Smart Temperature Sensor for Cold Chain Monitoring Applications -- 4.1 System Architecture -- 4.2 Circuit Implementation -- 4.3 Measurement Results -- 5 Conclusions -- References -- 11 Thermal Sensor and Reference Circuits Based on a Time-Controlled Bias of pn-Junctions in FinFET Technology -- 1 Introduction -- 2 Basic Principles -- 2.1 Bulk Diode Properties -- 2.2 Capacitive Bias of PN-Junctions -- 2.3 Forward-Bias Through Negative Charge-Pump -- 3 Application to a Switch-Cap Reverse Bandgap Reference -- 4 An Untrimmed Thermal Sensor Using Bulk Diodes for Sensing -- 4.1 Pulse-Controlled Sensor Principle -- 4.2 Circuit Realization with C-DAC -- 4.3 Simulation and Measurement Results. | |
5 Conclusions -- References -- 12 Resistor-Based Temperature Sensors -- 1 Introduction -- 2 Theoretical Energy Efficiency of Different Sensors -- 2.1 Temperature Sensors and Resolution FoM -- 2.2 BJT Sensor and Theoretical FoM -- 2.3 Resistor Sensor and Theoretical FoM -- 2.4 Effect of Readout Circuits -- 3 Resistor Choice and Sensor Topologies -- 3.1 Sensing Resistor Choice -- 3.2 Reference Choice -- 3.3 Dual-R Sensor Examples -- 3.4 RC Sensor Examples -- 4 An Energy-Efficient WhB Sensor Design -- 4.1 Front-End Design -- 4.2 Readout Circuit Design -- 4.3 Measurement Results -- 5 Summary -- References -- Part III High-speed Communication -- 13 Recent Advances in Fractional-N Frequency Synthesis -- 1 Introduction -- 2 Noise and Fractional-N Spurs -- 3 Divider Controller Spurs -- 4 Loop Nonlinearities -- 4.1 Loop Filter and Controlled Oscillator -- 4.2 Frequency Divider -- 4.3 Time Difference Measurement -- 5 Interaction Between the Divider Controller and Loop Nonlinearities -- 6 Spur Mitigation Strategies -- 7 All-Digital Phase Locked Loops -- 8 Conclusion -- References -- 14 ADC/DSP-Based Receivers for High-Speed Serial Links -- 1 Introduction -- 2 ADC Resolution Requirements and Topologies -- 3 Digital Equalization -- 4 A 52 Gb/s ADC-Based PAM-4 Receiver with Comparator-Assisted 2 Bit/Stage SAR ADC and Partially Unrolled DFE -- 4.1 Receiver Architecture -- 4.2 ADC Design -- 4.3 DSP Design -- 4.4 Measurement Results -- 5 Conclusion -- References -- 15 ADC-Based SerDes Receiver for 112 Gb/s PAM4 Wireline Communication -- 1 Introduction -- 2 ADC-Based Receiver Architecture -- 2.1 Peak to Main Cursor Ratio (PMR) -- 2.2 Distributed Equalization -- 3 112 Gb/s 16 nm Silicon Implementation -- 3.1 Receiver -- 3.2 Clocking -- 3.3 Measurement Results -- 4 Conclusions -- References. | |
16 BiCMOS-Integrated Circuits for Millimeter-Wave Wireless Backhaul Transmitters -- 1 Introduction -- 2 Reconfigurable Multi-core Voltage Controlled Oscillator -- 2.1 Multi-Core VCO Overview -- 2.2 Effect of Components Mismatch -- 2.3 VCO Measurement Results -- 3 Frequency Tripler with High Harmonics Suppression -- 3.1 Tripler Operating Principle -- 3.2 Tripler Design and Measurements -- 4 Wideband I/Q LO Generation with Self-tuned Polyphase Filter -- 4.1 I/Q LO Generation Architecture and Circuits Design -- 4.2 I/Q LO Measurement Results -- 5 E-Band Common-Base PAs Leveraging Current-Clamping -- 5.1 Principle of Current-Clamping -- 5.2 PAs Design and Measurements -- 6 Conclusions -- References -- 17 Optical Communication in CMOS-Bringing New Opportunities to an Established Platform -- 1 Introduction -- 2 Schottky Photodiodes in Bulk CMOS -- 2.1 Electrical Characterization -- 2.2 Optical Characterization -- 3 Integrated Receivers Without Equalization -- 4 Integrated Receivers with Equalization -- 5 CMOS 1310/1550nm Receiver Chip Implementations -- 5.1 Receivers Without Equalization -- 5.2 Receiver with Embedded IIR DFE -- 6 Conclusions -- References -- 18 Coherent Silicon Photonic Links -- 1 Introduction -- 2 Coherent Transceiver Operation -- 2.1 Transmitter -- 2.2 Receiver -- 3 High-Swing Linear Driver -- 4 Measurement Results -- 5 Conclusions -- References -- Index. | |
Titolo autorizzato: | Analog circuits for machine learning, current |
ISBN: | 3-030-91741-X |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910556885403321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |