Vai al contenuto principale della pagina
Titolo: | Advanced systems for biomedical applications / / Olfa Kanoun, Nabil Derbel, editors |
Pubblicazione: | Cham, Switzerland : , : Springer, , [2021] |
©2021 | |
Descrizione fisica: | 1 online resource (291 pages) |
Disciplina: | 610.28 |
Soggetto topico: | Biomedical engineering |
Persona (resp. second.): | KanounOlfa |
DerbelNabil | |
Nota di contenuto: | Intro -- Preface -- About This Book -- Contents -- Potential of Impedance Spectroscopy as a Manifold Non-invasive Method for Medical Applications -- 1 Introduction -- 2 Monitoring of Fluid and Body Cell Mass Changes -- 2.1 Body Composition Analysis -- 2.2 Assessment of Dry Weight and Body Hydration States -- 2.3 Blood, Glucose and Uric Acid Monitoring -- 3 Tissue Characterization and Cell Growth Monitoring -- 3.1 Tissue Characterization -- 3.2 Muscle State Assessment -- 3.3 Cerebral Monitoring -- 3.4 Cancer Diagnosis -- 3.5 Monitoring of Cell Growth -- 4 Monitoring of Dynamically Variable Biological Systems -- 4.1 Cardiovascular Diseases Prevention -- 4.2 Lung Tissue Characterization -- 5 Conclusion -- References -- Electrode Design for Reproducible Study of Tissues Impedance in Medical Applications -- 1 Introduction -- 2 Investigations of the Influence of Anisotropy and Contacting Effects -- 2.1 Definition of Measurement Parameters -- 2.2 Influence of Anisotropy -- 2.3 Influence of Contacting Effects -- 3 Design of Electrodes -- 4 Electrode Optimization for Medical Applications -- 5 Conclusion -- References -- Resonant Inductive Coupling for Wirelessly Powering Active Implants: Current Issues, Proposed Solutions and Future Technological attempts -- 1 Introduction -- 1.1 Batteries -- 1.2 Other Types of Embedded Power Sources -- 2 Wireless Power Transfer -- 2.1 Inductive Coupling WPT -- 2.2 Resonant Inductive Coupling WPT -- 3 Challenges in a RIC WPT System for IMDs -- 4 Proposed Solutions to Improve the Overall RIC WPT System Efficiency -- 4.1 Transmitter Circuit Optimization -- 4.2 Magnetic Coupling Optimization -- 5 Receiver Circuit Optimization -- 5.1 AC-DC Converters -- 5.2 DC-DC Converters -- 6 Human Health Consideration for EM Field Exposure -- 6.1 Safety Limits of Human Exposure to Magnetic, Electric and EM Field. |
6.2 Specific Absorption Rate -- 7 Summary and Future Perspectives -- References -- Fault Diagnosis for Nonlinear Biological Processes Based on Machine Learning Models -- 1 Introduction -- 2 Preliminaries -- 2.1 Kernel Partial Least Squares -- 3 Fault Detection Approach: Reduced KPLS Based GLRT -- 3.1 Reduced KPLS Model -- 3.2 Fault Detection Using Generalized Likelihood Ratio Test (GLRT) -- 4 Case Study Using the Cad System in E.coli (CSEC) -- 4.1 Cad System in E.coli (CSEC) Description -- 4.2 Fault Detection Results -- 5 Conclusions -- References -- Prospects of Internet of Things (IoT) and Machine Learning to Fight Against COVID-19 -- 1 Introduction -- 2 Fight Against COVID-19: An IoT Perspective -- 2.1 Thermal Monitoring with IoT -- 2.2 Heart Rate and SpO2 Monitoring for Primary COVID-19 Screening -- 3 Machine Learning in Fighting Against COVID-19 -- 3.1 Related Works -- 3.2 Proposed CNN Model for COVID-19 Detection -- 3.3 Results and Analysis -- 4 Conclusion -- References -- Development of an IoT-Based System for Training in Cardiopulmonary Resuscitation -- 1 Introduction -- 2 Background -- 2.1 Heart Attack -- 2.2 Cardiac Arrest or Sudden Cardiac Arrest -- 2.3 Adult CPR -- 3 Obtained Results -- 3.1 System Design -- 4 Discussion -- 5 Conclusion -- References -- Portable Cardiopulmonary Resuscitation and Ventilator Device: Design and Implementation -- 1 Introduction -- 2 Mechanical Ventilators -- 2.1 Negative Pressure Ventilation -- 2.2 Negative Pressure Ventilation -- 3 Ventilator Design Based on Reverse Engineering Concepts -- 4 Overall System -- 4.1 Ventilator -- 4.2 Cardiopulmonary Resuscitation -- 5 System Elements -- 5.1 Ventilator Elements -- 5.2 Cardiopulmonary Resuscitation Element -- 5.3 Operator Interface -- 6 Embedded System Design -- 6.1 Ventilator Interfacing -- 6.2 CPR Interfacing -- 6.3 Operator Interface. | |
6.4 Wireless Communication -- 7 Real-Time Computer Control -- 7.1 Calibration Task -- 7.2 Control Task -- 8 Testing and Validation -- 9 Conclusion -- References -- Virtual Reality and Augmented Reality Technologies for Smart Physical Rehabilitation -- 1 Introduction -- 2 Virtual Reality Serious Game -- 2.1 Wearable Interface for VR Serious Game -- 2.2 NUI Kinect-Virtual Serious Game -- 2.3 NUI Leap Motion Controller-VR Serious Game -- 3 Augmented Reality Serious Game -- 3.1 AR Sensing -- 3.2 AR Serious Games for Physical Rehabilitation -- 4 Conclusion -- References -- Control of Lower Limb Exoskeletons for Gait Rehabilitation Purposes -- 1 Introduction -- 2 Rehabilitation Challenge -- 2.1 Standard Rehabilitation -- 2.2 Robotic Devices in Rehabilitation -- 3 Proposed Control Approaches for Exoskeleton -- 3.1 Sliding Mode Control with an Integral Action -- 3.2 Adaptive Sliding Mode Control with an Integral Action -- 4 Simulation Results -- 5 Conclusion -- References -- Indoor Scene Simplification for Safe Navigation Using Saliency Map for the Benefit of Visually Impaired People -- 1 Introduction -- 2 Literature Review -- 3 Saliency Map: Overview -- 3.1 Salient Detection Methods -- 3.2 Salient Detection for the Benefit of VIP -- 4 Morphological Operations -- 4.1 Basis of Mathematical Morphology Transforms -- 4.2 Opening and Closing by Reconstruction -- 5 Proposed Method -- 5.1 Step 1: Preprocessing: Downscaling and Noise Removing -- 5.2 Step 2: Processing: Saliency Map Generation (1st Scene Simplification) -- 5.3 Step 3: Post-processing: Opening-Closing by Reconstruction (2nd Scene Simplification) -- 5.4 Step 4: Image Segmentation Using Region Merging (3rd Simplification) -- 6 Experiments -- 6.1 Dataset -- 6.2 Results and Discussion -- 7 Conclusion -- References -- Towards Intelligent Control of Electric Wheelchairs for Physically Challenged People. | |
1 Introduction -- 2 Wheelchair System -- 2.1 Electrical Wheelchair -- 2.2 Sensing Unit -- 2.3 Human-Computer Interface (HCI) -- 2.4 Control Unit -- 2.5 Tracking and Safety Unit -- 3 Sensing Methods -- 3.1 Finger Movement Detection -- 3.2 Voice-Based Detection -- 3.3 Brain Wave Detection -- 3.4 Muscle Wave Detection -- 3.5 Head Motion Controller -- 4 Voice Computer Interface -- 4.1 Voice Recognition Process -- 4.2 Neural Network-Based Classification -- 5 Brain Computer Interface -- 5.1 Brain Activities Training -- 5.2 Generating Control Commands -- 6 Hardware Design -- 7 ANFIS-Based Controller Design -- 7.1 MIMO ANFIS Design -- 7.2 MIMO ANFIS Algorithm -- 7.3 ANFIS Performance -- 8 Direct Interface Between SIMULINK and V-REP -- 8.1 Preparing the V-REP Module -- 8.2 SIMULINK Model for the ANFIS Controller -- 9 Results and Discussion -- 9.1 Performance Comparison of PID and ANFIS Controllers -- 9.2 V-REP Test -- 9.3 Wheelchair Prototype Test -- References -- Fuzzy Control of an Intelligent Electric Wheelchair Using an EMOTIV EPOC Headset -- 1 Introduction -- 2 State of the Art -- 2.1 Historical Evolution of Wheelchairs -- 2.2 Electric Wheelchairs Types -- 3 Presentation of the Selected Electric Wheelchair -- 3.1 Gear Motors -- 3.2 Power Card -- 3.3 System Design -- 4 Sub-parts of the Wheelchair -- 4.1 Control Card -- 4.2 Ultrasonic Sensors -- 4.3 Casque EMOTIV EPOC -- 5 Software and Hardware Implementation -- 5.1 Ultrasonic Sensors -- 5.2 Obstacle Avoidance, Fuzzy Controller -- 5.3 EMOTIV EPOC Helmet -- 5.4 Wheelchair Operation Flowchart -- 5.5 Experimental Results -- 6 Conclusion -- References. | |
Titolo autorizzato: | Advanced systems for biomedical applications |
ISBN: | 3-030-71221-4 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910495209903321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |