Vai al contenuto principale della pagina
Titolo: | Microbiomes and the global climate change / / Showkat Ahmad Lone, Abdul Malik, editors |
Pubblicazione: | Gateway East, Singapore : , : Springer, , [2021] |
©2021 | |
Descrizione fisica: | 1 online resource (375 pages) |
Disciplina: | 579.17 |
Soggetto topico: | Microbial ecology |
Ecologia microbiana | |
Canvi climàtic | |
Soggetto genere / forma: | Llibres electrònics |
Persona (resp. second.): | LoneShowkat Ahmad |
MalikAbdul | |
Nota di contenuto: | Intro -- Preface -- Contents -- Editors and Contributors -- Part I: Climate Change and Microbial Ecology -- 1: Microbes and Climate: A Tangled Relation -- 1.1 Brief History and Introduction of Microbial Evolution and Climate Change -- 1.2 Climatic Change and Microorganisms -- 1.3 Impact of Climate Change on Microbial Community -- 1.3.1 Anthropogenic Factors -- 1.3.1.1 Use of Antibiotics and Antifungal Agents -- 1.3.1.2 Use of Agrochemicals -- 1.3.1.3 Disposing Untreated Waste by Scientific Laboratories and Industries -- 1.4 Microorganisms, Agriculture, and Global Warming -- 1.5 Conclusion -- References -- 2: Carbon Sequestration in Aquatic System Using Microbial Pump -- 2.1 Introduction -- 2.2 Understanding DOC Fractions -- 2.3 Classical Ocean Carbon Pumps -- 2.3.1 Solubility Pump -- 2.3.2 Biological Carbon Pump -- 2.3.3 Carbonate Pump -- 2.4 Microbial Carbon Pump (MCP) -- 2.5 Disturbances and Effects on Microbial Carbon Pump -- 2.5.1 Warming of Ocean Waters -- 2.5.2 Ocean Stratification and Nutrient Supply -- 2.5.3 Exposure to UV Radiation -- 2.5.4 Ocean Acidification -- 2.5.5 Thermohaline Circulation -- 2.6 Conclusion -- References -- 3: Climate Change Extenuation by Greenhouse Gas Quenching Microflora -- 3.1 Introduction -- 3.2 Soil Microbes and Climate Change -- 3.3 Microbes and Global Warming -- 3.4 Microbes as Carbon Sink -- 3.5 Combating Global Warming Through Biofuels -- 3.6 Volatile Organic Carbon Mitigation and Methylotrophs -- 3.7 Carbon Cycling and Climate Change -- 3.8 Methylotrophs Mitigating Methane -- 3.9 Methylotrophs Mitigating Methane in Paddy Fields -- 3.10 Conclusions -- References -- 4: Role of Methanotrophs in Mitigating Global Warming -- 4.1 Introduction -- 4.2 Methane and its Sources -- 4.2.1 Paddy Fields -- 4.2.2 Methane Hydrates -- 4.2.3 Coal Mines -- 4.3 Methanotrophs Based Mitigation of Methane -- 4.3.1 Methanotrophs. |
4.3.2 Biodiversity of Methanotrophs -- 4.3.3 Catalytic Properties of MMOs -- 4.4 Role of Methanotrophs in Mitigating Methane Emission -- 4.4.1 Mitigation of Methane Emissions from Landfills -- 4.4.2 Mitigation of Methane Emissions from Coal Mines -- 4.5 Engineered Strategies for Methane Removal -- 4.6 Conclusions -- References -- 5: Paradigm Ecological Shift and Succession in Microbiomes: A Climatic Advent -- 5.1 Introduction -- 5.2 Responses of Soil Microbial Community Under Changing Multiple Climatic Factors -- 5.3 Development and Evolution of Microbial Ecosystems and Its Gradual Succession -- 5.4 Role of Microbes in Global Warming and Recycling the Essential Elements -- 5.5 Acceleration of the Spatial Turnover of Soil Microbial Communities Under Elevated CO2 -- 5.6 Few Example of Microbial Community Succession Under Changing Environment Stimulated Through Soil Transplant -- 5.7 Influence of Climate Change in Shifting Plant Diseases from Minor to Major -- 5.8 Effect of Climate Change on Marine Microbial Succession -- 5.9 Conclusion -- References -- 6: Exploring the Diversity of Marine Microbiome in Response to Changes in the Environment -- 6.1 Introduction -- 6.2 Marine Microbiome -- 6.3 Marine Microorganisms (Bacteria, Archaea, and Eukarya) and Viruses -- 6.4 Importance of Marine Microbes -- 6.4.1 Biogeochemical Cycling of the Nutrients -- 6.4.2 Degradation of Organic Matters -- 6.4.3 Source of Novel Bioactive Compounds -- 6.4.4 Tackling Pollution -- 6.4.5 Maintenance of Marine Food Chain and Food Web -- 6.5 Environmental Factors Affecting the Marine Microbiome -- 6.5.1 Global Climate Change -- 6.5.2 Environmental Pollution -- 6.6 Conclusion -- References -- 7: Polar Microbes as Climate-Resilient Pathways for Mitigation of Climate Change -- 7.1 Introduction -- 7.2 Polar Regions and Climate Change. | |
7.3 Recent Environmental Changes in Polar Regions -- 7.3.1 Changes in Atmospheric Circulation -- 7.3.2 Changes in Temperature and Ocean Circulation -- 7.3.3 Changes in Sea Ice and Ice Sheets -- 7.3.4 Changes in Microbial Interactions -- 7.4 Microbial Diversity in Polar Regions -- 7.4.1 Diatoms -- 7.4.2 Snow Algae -- 7.4.3 Cyanobacteria -- 7.4.4 Other Microbes -- 7.5 Adaptations in Low Temperatures -- 7.5.1 Adaptations in Cell Envelope and Cell Membrane -- 7.5.2 Adaptations in Membrane Pigments -- 7.5.3 Adaptations in Cell Wall -- 7.5.4 Antifreeze Proteins -- 7.5.5 Compatible Solutes -- 7.5.6 Other Adaptations -- 7.6 Role of Microbes in Mitigation of Climate Change -- 7.7 Conclusion -- References -- Part II: Climate Change and Pathogens -- 8: Climate Change and Population Health -- 8.1 Introduction -- 8.2 Consequences of Climate change -- 8.2.1 Exposure to Thermal Extremes and Other Weather Events -- 8.2.2 Biological Impact of Air Pollution, Pollens, and Spores -- 8.2.3 Effect Due to Change in Range and Activity of Vectors -- 8.2.4 Effect of Alteration in Infective Agents -- 8.2.5 Effect of Alteration in Crop Production -- 8.2.6 Effect of Extreme Weather Events -- 8.2.7 Effect of Stratospheric Ozone Depletion -- 8.3 Future Trends -- 8.4 Strategies to Minimize the Health Risk -- 8.5 What is Being Done at Country and International Level? -- References -- 9: Impact of Climate Change on the Incidence and Transfer of Food- and Water-Borne Diseases -- 9.1 Introduction -- 9.2 Climate Change a Global Concern -- 9.3 Incidence of Diseases in Relation to the Climate Change -- 9.3.1 Food Handling and Security -- 9.3.2 Foodborne Diseases -- 9.3.2.1 Campylobacteriosis -- 9.3.2.2 Salmonellosis -- 9.3.2.3 Listeriosis -- 9.3.2.4 Bacillus cereus -- 9.3.2.5 Clostridium -- 9.3.2.6 Staphylococcus -- 9.3.2.7 Escherichia coli -- 9.3.3 Waterborne Diseases. | |
9.3.3.1 Vibrio Spp. -- 9.4 Risk and Mitigation Approach -- 9.5 Conclusion -- References -- 10: Climate Change: Any Dangers from Antimicrobial Resistant Bacteria? -- 10.1 Pathogens -- 10.1.1 Pathogen Prevalence -- 10.1.2 Gene Transfer -- 10.2 Agriculture -- 10.2.1 AMA and AMR Pathways in Agriculture -- 10.2.2 Influence of Climate Change on Agriculture -- 10.2.3 Possible Changes Induced by Climate Change on AMR in Agriculture -- 10.3 Water Distribution and Quality -- 10.3.1 Surface Waters -- 10.3.2 Water Distribution -- 10.4 Melting Glaciers and Permafrost Thaws -- 10.5 Hydrological Changes and Legacy Pollution -- 10.6 Summary -- References -- 11: Phyllosphere Microbiome: Plant Defense Strategies -- 11.1 Introduction -- 11.2 Phylloplane -- 11.3 Phylloplane Microbes or Epiphytes -- 11.4 Inter-Microbial Interactions -- 11.5 Antimicrobial Activity of Epiphytes -- 11.6 Climate Change and Microbial Colonization -- 11.7 Plant-Microbe Interactions -- 11.8 Elicitation of Plant Defense Response by Fungal Metabolites and Ergosterol -- 11.9 Intercellular Fluid Proteins -- 11.10 Phenylalanine Ammonia Lyase (PAL) in Plant Defense -- 11.11 Tyrosine Ammonia Lyase (TAL) in Plant Defense -- 11.12 Peroxidases (POX) -- 11.13 Polyphenol Oxidases (PPO) -- 11.14 Age Related Resistance (ARR) in Plants -- 11.15 Systemic Acquired Resistance (SAR) in Plants -- 11.16 Priming and Pathogenesis-Related (PR) Proteins -- 11.17 Changes Induced in Total Phenols and Flavonoids by Microorganisms -- 11.18 Conclusion -- 11.19 Future Prospects -- References -- Part III: Climate Change and Agriculture -- 12: Understanding Methanogens, Methanotrophs, and Methane Emission in Rice Ecosystem -- 12.1 Introduction -- 12.2 Methanogens and Methane Production in Rice Field -- 12.3 Methanotrophs and Methane Oxidation in Rice Soil -- 12.4 Methane Oxidation in Rice Ecosystem. | |
12.5 Factors Affecting Methane Emission in Rice Ecosystems -- 12.5.1 Soil Temperature -- 12.5.2 Soil Organic Matter -- 12.5.3 Soil Texture -- 12.5.4 Application of Fertilizers -- 12.6 Mitigation of Methane Emission from Rice Ecosystem -- 12.6.1 Irrigation Management -- 12.6.2 Rice Cultivar -- 12.6.3 Methane Mitigation Through Azolla -- 12.6.4 Other Interventions for Methane Mitigation in Rice -- 12.7 Conclusion -- References -- 13: Soil Microflora and its Role in Diminution of Global Climate Change -- 13.1 Introduction -- 13.2 Terrestrial Microbiome -- 13.3 Changes in Climate Affect Soil Microflora -- 13.3.1 Temperature and Thermal Adaptation on Soil Microbes -- 13.3.2 Precipitation -- 13.3.3 Elevation of Carbon Dioxide -- 13.3.4 Resistance Development in Several Harmful Plant Pathogens -- 13.4 Effects of Soil Microflora on Climate Change -- 13.4.1 Carbon Dioxide Emission -- 13.4.2 Methane Emission -- 13.4.3 Role of Ruminants, Earthworms and Herbivores -- 13.5 Agriculture -- 13.5.1 Methane Emission from Different Agricultural Activities -- 13.5.2 Fossil Fuel Combustion and Use of Fertilizers -- 13.5.3 Eutrophication -- 13.6 Microbial Mitigation of Climate Change -- 13.6.1 Management of Soil-Borne Plant Pathogens -- 13.6.1.1 Exploitation of Pseudomonas, Bacillus and Other Rhizobacterial Species -- 13.6.1.2 Exploitation of Rhizobacteria Against Other Biotic Stresses -- 13.6.1.3 Induction of Systemic Resistance -- 13.6.2 Microbial Exploitation for Sustainable Agriculture and Plant Growth Enhancement -- 13.6.2.1 Development of Biofertilizer or Nitrogen Fixer -- 13.6.2.2 Phytohormone Synthesis -- 13.6.3 Bioremediation -- 13.6.3.1 Microbial Bioremediation: Overview and Types -- 13.6.3.2 Bioremediation of Heavy Metals -- 13.6.3.3 Other Scopes and Possibilities: Synthetic Biology Approach -- 13.7 Conclusion -- References. | |
14: Role of Microorganisms in Plant Adaptation Towards Climate Change for Sustainable Agriculture. | |
Titolo autorizzato: | Microbiomes and the global climate change |
ISBN: | 981-334-508-X |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910488716003321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |