Vai al contenuto principale della pagina

Plant growth regulators : signalling under stress conditions / / edited by Tariq Aftab, Khalid Rehman Hakeem



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Plant growth regulators : signalling under stress conditions / / edited by Tariq Aftab, Khalid Rehman Hakeem Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2021]
©2021
Descrizione fisica: 1 online resource (504 pages)
Disciplina: 581.1
Soggetto topico: Plant physiology
Botany
Biotechnology
Genètica vegetal
Creixement (Plantes)
Hormones vegetals
Soggetto genere / forma: Llibres electrònics
Persona (resp. second.): AftabTariq
HakeemKhalid Rehman
Nota di contenuto: Intro -- Preface -- Contents -- Contributors -- About the Editors -- Chapter 1: Prospective Role of Plant Growth Regulators for Tolerance to Abiotic Stresses -- 1.1 Introduction -- 1.2 Abiotic Stress Effects on Crops -- 1.2.1 Temperature Fluctuations -- 1.2.2 Drought Stress -- 1.2.3 Salinity Stress -- 1.3 Overview of PGRs Under Stressful Environment -- 1.4 PGR-Induced Changes in the Agronomic Traits of Crop -- 1.4.1 Interactive Effect of PGRs on Growth and Yield Traits -- 1.4.2 Role of PGRs in Plant Physiology -- 1.4.2.1 Role of PGRs on Chlorophyll Contents -- 1.4.2.2 Role of PGRs in Photosynthesis -- 1.4.2.3 Role of PGRs on Protein Contents -- 1.4.3 Role of PGRs in Nodule Formation -- 1.5 Impact of PGRs on Abiotic Stress Tolerance -- 1.5.1 Impact of PGRs on Drought Stress Tolerance -- 1.5.2 Role of PGRs on Salt Stress Tolerance -- 1.5.3 Role of PGRs in Heat Stress Tolerance -- 1.5.4 Effect of PGRs on Heavy Metal Stress -- 1.6 PGRs-Induced Antioxidant Defense Under Abiotic Stress -- 1.7 Relation Between Nutrient and PGPR Under Abiotic Stress -- 1.7.1 Nitrogen Fixation -- 1.7.2 Phosphate Solubilization -- 1.7.3 Potassium Solubilization -- 1.7.4 Plant Growth-Promoting Rhizobium (PGPR) and Phytohormone Production -- 1.7.5 Siderophore Production -- 1.8 The Indirect Mechanism to Abiotic Stress -- 1.8.1 VOC Production -- 1.8.2 Lytic and Protective Enzymes Production -- 1.8.3 EPS Production -- 1.8.4 Induced Systematic Resistance -- 1.8.5 Antibiotic Production -- 1.9 Conclusion and Future Outlooks -- References -- Chapter 2: Accumulation, Partitioning, and Bioavailability of Micronutrients in Plants and Their Crosstalk with Phytohormones -- 2.1 Introduction -- 2.2 Role of Micronutrients in Plant Growth and Physiology, Metabolic, and Biochemical Processes -- 2.3 Uptake Mechanism and Transportation of Micronutrients in Plants.
2.3.1 Sources of Micronutrients -- 2.3.2 Bioavailability from Soil -- 2.3.3 Absorption by Roots -- 2.4 Factors Affecting Micronutrient Uptake -- 2.4.1 Soil Texture -- 2.4.2 Organic Matter -- 2.4.3 Clay Contents -- 2.4.4 Soil pH -- 2.4.5 Nutrient Interaction -- 2.4.6 Oxidation State -- 2.4.7 Soil Moisture and Temperature -- 2.4.8 Rhizosphere Conditions -- 2.4.9 Other Factors -- 2.5 Compartmentalization and Absorption in Plant Body -- 2.6 Strategies to Improve Bioavailability and Biofortification of Micronutrients -- 2.6.1 Genetic Manipulation -- 2.6.2 Agronomic Biofortification -- 2.6.3 Good Agricultural Practices -- 2.6.4 Nutrients Synergism -- 2.6.5 Precision Agriculture -- 2.7 Phytohormones: Domain, Principality, and Functionality in Plants -- 2.7.1 Phytohormones -- 2.8 Classification and Functions of Phytohormones in Plants -- 2.8.1 Abscisic Acid (ABA) -- 2.8.2 Auxins (IAA) -- 2.8.3 Cytokinins (CKs) -- 2.8.4 Ethylene (ET) -- 2.8.5 Gibberellins (GAs) -- 2.8.6 Brassinosteroids (BRs) -- 2.8.7 Jasmonates (JAs) -- 2.8.8 Salicylic Acid (SA) -- 2.8.9 Strigolactones (SL) -- 2.9 Micronutrients and Phytohormones Homeostasis and Crosstalk -- 2.9.1 Role of Micronutrients in Hormonal Biosynthesis -- 2.9.2 Role of Micronutrients in Alleviating Abiotic Stress -- 2.9.3 Interaction of Micronutrients and Phytohormones -- 2.10 Role of Various Micronutrients in Uplifting Phytohormones in Plants Under Stress Conditions -- 2.10.1 Role of Hormones in Assuaging Heavy Metal Stress -- 2.11 Summary and Future Prospects -- References -- Chapter 3: An Insight into the Role of Plant Growth Regulators in Stimulating Abiotic Stress Tolerance in Some Medicinally Important Plants -- 3.1 Introduction -- 3.2 Effect of Different Abiotic Stresses on MAPs -- 3.2.1 Heavy Metals and Metalloid Stresses -- 3.2.2 Salinity Stress -- 3.2.3 Drought and Flooding Stress.
3.2.4 Heat, Light, and Temperature Stresses -- 3.3 Role of Plant Growth Regulators in Alleviating Different Abiotic Stresses -- 3.3.1 Abscisic Acid -- 3.3.2 Cytokinins -- 3.3.3 Auxins -- 3.3.4 Gibberellins -- 3.3.5 Ethylene -- 3.4 Conclusion -- References -- Chapter 4: Hormonal Regulation in Cell Culture of Artemisia annua L. Plant -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Plant Materials and Chemicals -- 4.2.2 Media and Culture Conditions -- 4.2.3 Statistical Analysis -- 4.3 Result and Discussion -- 4.3.1 Callogenic Response -- 4.3.2 Shoot Induction and Regeneration -- 4.3.3 Root Induction -- 4.4 Conclusion and Summary -- References -- Chapter 5: Medicinal and Aromatic Plants Under Abiotic Stress: A Crosstalk on Phytohormones' Perspective -- 5.1 Introduction -- 5.1.1 Mentha Arvensis -- 5.1.2 Mentha Piperita -- 5.1.3 Catharanthus roseus -- 5.1.4 Artemisia Annua -- 5.2 Conclusion and Future Outlook -- References -- Chapter 6: Cytokinin-Mediated Signalling During Environmental Stress in Plants -- 6.1 Introduction -- 6.2 Metabolic Pathway of CKs -- 6.3 CK-Mediated Signalling Pathway and Its Components -- 6.3.1 Signal Transduction by CKs -- 6.3.2 Components of the Signalling Pathway -- 6.3.2.1 Histidine Kinases (HK) -- 6.3.2.2 Histidine Phosphotransfer (HP) -- 6.3.2.3 Response Regulator (RR) -- 6.4 Role of CK Signalling System in Response to Various Abiotic Stresses -- 6.4.1 Drought Stress -- 6.4.2 Salinity Stress -- 6.4.3 Extreme Temperature -- 6.4.4 Light Stress -- 6.4.5 Nutrient Stress -- 6.4.6 Heavy Metal Stress -- 6.4.7 Biotic Stress -- 6.5 Conclusion and Future Perspectives -- References -- Chapter 7: Leaf Senescence and Ethylene Signaling -- 7.1 Introduction -- 7.2 Leaf Senescence -- 7.3 Physiological Changes During Leaf Senescence -- 7.4 Factors Affecting Leaf Senescence -- 7.5 Phytohormones and Leaf Senescence.
7.5.1 Role of Ethylene -- 7.5.2 Ethylene Biosynthesis -- 7.5.3 Ethylene Receptors -- 7.5.4 Location of Ethylene Receptors -- 7.6 Elements of the Ethylene Signaling Pathway -- 7.7 Other Transcription Factor Families -- 7.8 Role of Transcription Factors in Ethylene Signaling During Leaf Senescence -- 7.9 Ethylene Signal Transduction Pathway -- 7.10 Conclusion -- References -- Chapter 8: Methyl Jasmonate and Brassinosteroids: Emerging Plant Growth Regulators in Plant Abiotic Stress Tolerance and Environmental Changes -- 8.1 Introduction -- 8.2 Methyl Jasmonate and Brassinosteroids and Abiotic Stress: Main Alleviating Factors in Plant Abiotic Stress Tolerance -- 8.2.1 Salinity Stress -- 8.2.2 Metal/Metalloid Stress -- 8.2.3 Drought Stress -- 8.3 Conclusion and Future Prospectus -- References -- Chapter 9: Brassinosteroids Signaling Pathways in Plant Defense and Adaptation to Stress -- 9.1 Introduction -- 9.2 Signaling Pathways of Brassinosteroids -- 9.3 Brassinosteroids Signaling Transduction -- 9.4 Brassinosteroids Signaling in Plant Development -- 9.5 Brassinosteroids Signaling in Environmental Stresses -- 9.5.1 Role of BRs in Response to Drought Stress -- 9.5.2 Role of BRs in Response to Heat Stress -- 9.5.3 Role of BRs in Response to Cold Stress -- 9.5.4 Role of BRs in Response to Salinity Stress -- 9.5.5 Role of BRs in Response to Nutrient Stress -- References -- Chapter 10: Roles of Hydrogen Sulfide in Regulating Temperature Stress Response in Plants -- 10.1 Introduction -- 10.2 Understanding H2S Homeostasis Within Plants -- 10.3 Regulation of H2S Signaling During Temperature Stress -- 10.3.1 Regulation of H2S Signaling During Heat Stress -- 10.3.2 Regulation of H2S Signaling During Cold/Chilling Stress -- 10.4 Role of H2S in Generating Temperature Stress Tolerance in Plants -- 10.4.1 Role of H2S in Generating High Temperature Stress Tolerance.
10.4.2 Role of H2S in Generating Low Temperature Stress Tolerance -- 10.5 Conclusion -- 10.6 Future Perspectives -- References -- Chapter 11: Physiological, Biochemical, and Molecular Mechanism of Nitric Oxide-Mediated Abiotic Stress Tolerance -- 11.1 Introduction -- 11.2 Antiquity of Nitric Oxide -- 11.3 Nitric Oxide Synthesis in Plants -- 11.3.1 Nitrate Reductase -- 11.3.2 Nitric Oxide Synthase (NOS) -- 11.3.3 Nitrite Reductase -- 11.3.4 Non-enzymatic Production of NO in Plants -- 11.4 Signaling Pathways of Nitric Oxide -- 11.4.1 Metal Nitrosylation -- 11.4.2 S-Nitrosylation -- 11.4.3 Tyr-Nitration -- 11.5 Abiotic Stress Tolerance and Its Response -- 11.6 Function of Nitric Oxide in Abiotic Stress Tolerance -- 11.6.1 Salt Stress -- 11.6.2 Drought Stress -- 11.6.3 Temperature Stress -- 11.6.4 Ultraviolet Radiation Stress -- 11.6.5 Heavy Metals Stress -- 11.7 Conclusion -- References -- Chapter 12: Melatonin: Role in Abiotic Stress Resistance and Tolerance -- 12.1 Introduction -- 12.2 Melatonin Biosynthesis Pathway in Plant -- 12.3 Melatonin as Abiotic Stress-Alleviating Agent -- 12.3.1 Role of Melatonin in Mitigating Salinity Stress -- 12.3.2 Role of Melatonin Against Drought Stress -- 12.3.3 Against Heavy Metal Stress -- 12.3.4 Against Temperature Extremes -- 12.4 Mechanism of Stress Alleviation by Melatonin -- 12.4.1 Mel Activates Antioxidant Systems in Response to Stress -- 12.4.2 Melatonin Improves Plant Photosynthesis Under Stress -- 12.4.3 Melatonin Regulates Plant Hormone Metabolism -- 12.4.4 Melatonin Promotes Ion Homeostasis Under Salt Stress -- 12.4.5 Melatonin Mediates NO Signalling Pathway -- 12.4.6 Melatonin Enhances the Production of Osmolytes -- 12.4.7 Melatonin Regulates Polyamine Metabolism -- 12.4.8 Melatonin Role in Stress Signalling -- 12.5 Regulatory Mechanism of Melatonin.
12.6 Genetic Modification in Melatonin Changes Stress Tolerance in Plants.
Titolo autorizzato: Plant growth regulators  Visualizza cluster
ISBN: 3-030-61153-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910484631003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui