Vai al contenuto principale della pagina
Titolo: | Deep Learning Classifiers with Memristive Networks : Theory and Applications / / edited by Alex Pappachen James |
Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Edizione: | 1st ed. 2020. |
Descrizione fisica: | 1 online resource (216 pages) |
Disciplina: | 006.32 |
Soggetto topico: | Computational intelligence |
Pattern recognition | |
Data mining | |
Optical data processing | |
Computational Intelligence | |
Pattern Recognition | |
Data Mining and Knowledge Discovery | |
Image Processing and Computer Vision | |
Persona (resp. second.): | JamesAlex Pappachen |
Nota di bibliografia: | Includes bibliographical references. |
Sommario/riassunto: | This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors. |
Titolo autorizzato: | Deep Learning Classifiers with Memristive Networks |
ISBN: | 3-030-14524-7 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910483938503321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |