Vai al contenuto principale della pagina
Titolo: | Affine Bernstein problems and Monge-Ampère equations [[electronic resource] /] / An-Min Li ... [et al.] |
Pubblicazione: | Singapore ; ; Hackensack, N.J., : World Scientific, c2010 |
Descrizione fisica: | 1 online resource (192 p.) |
Disciplina: | 516.36 |
Soggetto topico: | Affine differential geometry |
Monge-Ampère equations | |
Soggetto genere / forma: | Electronic books. |
Altri autori: | LiAn-Min <1946-> |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references (p. 173-177) and index. |
Nota di contenuto: | Preface; Contents; 1. Basic Tools; 2. Local Equiaffine Hypersurfaces; 3. Local Relative Hypersurfaces; 4. The Theorem of Jorgens-Calabi-Pogorelov; 5. Affine Maximal Hypersurfaces; 6. Hypersurfaces with Constant Affine Mean Curvature; Bibliography; Index |
Sommario/riassunto: | In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It is well-known that many geometric problems in analytic formulation lead to important classes of PDEs. The focus of this monograph is on variational problems and higher order PDEs for affine hypersurfaces. Affine maximal hypersurfaces are extremals of the interior variation of the affinely invariant volume. The corresponding Euler-Lagrange equation is a highly complicated nonlinear fourth order PDE. In recent years, the global study of such fourth order PDEs has received con |
Titolo autorizzato: | Affine Bernstein problems and Monge-Ampère equations |
ISBN: | 1-282-76028-9 |
9786612760280 | |
981-281-417-5 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910456198403321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |