Vai al contenuto principale della pagina
Autore: | Tourlakis George J. |
Titolo: | Lectures in logic and set theory . Volume 1 Mathematical logic / / George Tourlakis [[electronic resource]] |
Pubblicazione: | Cambridge : , : Cambridge University Press, , 2003 |
Descrizione fisica: | 1 online resource (xi, 328 pages) : digital, PDF file(s) |
Disciplina: | 511.3 |
Soggetto topico: | Logic, Symbolic and mathematical |
Set theory | |
Note generali: | Title from publisher's bibliographic system (viewed on 05 Oct 2015). |
Nota di bibliografia: | Includes bibliographical references and indexes. |
Nota di contenuto: | Cover; Half-title; Series-title; Title; Copyright; Contents; Preface; I Basic Logic; II The Second Incompleteness Theorem; Bibliography; List of Symbols; Index |
Sommario/riassunto: | This two-volume work bridges the gap between introductory expositions of logic or set theory on one hand, and the research literature on the other. It can be used as a text in an advanced undergraduate or beginning graduate course in mathematics, computer science, or philosophy. The volumes are written in a user-friendly conversational lecture style that makes them equally effective for self-study or class use. Volume 1 includes formal proof techniques, a section on applications of compactness (including nonstandard analysis), a generous dose of computability and its relation to the incompleteness phenomenon, and the first presentation of a complete proof of Godel's 2nd incompleteness since Hilbert and Bernay's Grundlagen theorem. |
Altri titoli varianti: | Lectures in Logic & Set Theory |
Titolo autorizzato: | Lectures in logic and set theory |
ISBN: | 1-107-12856-0 |
1-280-41776-5 | |
9786610417766 | |
1-139-14853-2 | |
0-511-18060-8 | |
0-511-06658-9 | |
0-511-06027-0 | |
0-511-30759-4 | |
0-511-61555-8 | |
0-511-06871-9 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910450654903321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |