Vai al contenuto principale della pagina

Language Identification Using Excitation Source Features / / by K. Sreenivasa Rao, Dipanjan Nandi



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Rao K. Sreenivasa (Krothapalli Sreenivasa) Visualizza persona
Titolo: Language Identification Using Excitation Source Features / / by K. Sreenivasa Rao, Dipanjan Nandi Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Edizione: 1st ed. 2015.
Descrizione fisica: 1 online resource (128 p.)
Disciplina: 006.35
410.285
620
621.382
Soggetto topico: Signal processing
Image processing
Speech processing systems
Natural language processing (Computer science)
Computational linguistics
Signal, Image and Speech Processing
Natural Language Processing (NLP)
Computational Linguistics
Persona (resp. second.): NandiDipanjan
Note generali: Description based upon print version of record.
Nota di contenuto: Introduction -- Language Identification--A Brief Review -- Implicit Excitation Source Features for Language Identification -- Parametric Excitation Source Features for Language Identification -- Complementary and Robust Nature of Excitation Source Features for Language Identification -- Conclusion.
Sommario/riassunto: This book discusses the contribution of excitation source information in discriminating language. The authors focus on the excitation source component of speech for enhancement of language identification (LID) performance. Language specific features are extracted using two different modes: (i) Implicit processing of linear prediction (LP) residual and (ii) Explicit parameterization of linear prediction residual. The book discusses how in implicit processing approach, excitation source features are derived from LP residual, Hilbert envelope (magnitude) of LP residual and Phase of LP residual; and in explicit parameterization approach, LP residual signal is processed in spectral domain to extract the relevant language specific features. The authors further extract source features from these modes, which are combined for enhancing the performance of LID systems. The proposed excitation source features are also investigated for LID in background noisy environments. Each chapter of this book provides the motivation for exploring the specific feature for LID task, and subsequently discuss the methods to extract those features and finally suggest appropriate models to capture the language specific knowledge from the proposed features. Finally, the book discuss about various combinations of spectral and source features, and the desired models to enhance the performance of LID systems.
Titolo autorizzato: Language Identification Using Excitation Source Features  Visualizza cluster
ISBN: 3-319-17725-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910299821303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning, . 2191-737X