Vai al contenuto principale della pagina

Speech Recognition Using Articulatory and Excitation Source Features / / by K. Sreenivasa Rao, Manjunath K E



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Rao K. Sreenivasa (Krothapalli Sreenivasa) Visualizza persona
Titolo: Speech Recognition Using Articulatory and Excitation Source Features / / by K. Sreenivasa Rao, Manjunath K E Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Edizione: 1st ed. 2017.
Descrizione fisica: 1 online resource (XI, 92 p. 23 illus., 4 illus. in color.)
Disciplina: 152.15
Soggetto topico: Signal processing
Image processing
Speech processing systems
Natural language processing (Computer science)
Computational linguistics
Signal, Image and Speech Processing
Natural Language Processing (NLP)
Computational Linguistics
Persona (resp. second.): K EManjunath
Nota di bibliografia: Includes bibliographical references at the end of each chapters.
Nota di contenuto: Introduction -- Literature Review -- Articulatory Features for Phone Recognition -- Excitation Source Features for Phone Recognition -- Articulatory and Excitation Source Features for Speech Recognition in Read, Extempore and Conversation Modes -- Conclusion -- Appendix A: MFCC Features -- Appendix B: Pattern Recognition Models.
Sommario/riassunto: This book discusses the contribution of articulatory and excitation source information in discriminating sound units. The authors focus on excitation source component of speech -- and the dynamics of various articulators during speech production -- for enhancement of speech recognition (SR) performance. Speech recognition is analyzed for read, extempore, and conversation modes of speech. Five groups of articulatory features (AFs) are explored for speech recognition, in addition to conventional spectral features. Each chapter provides the motivation for exploring the specific feature for SR task, discusses the methods to extract those features, and finally suggests appropriate models to capture the sound unit specific knowledge from the proposed features. The authors close by discussing various combinations of spectral, articulatory and source features, and the desired models to enhance the performance of SR systems.
Titolo autorizzato: Speech Recognition Using Articulatory and Excitation Source Features  Visualizza cluster
ISBN: 3-319-49220-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910159386303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning, . 2191-737X