Vai al contenuto principale della pagina

Stochastic Porous Media Equations / / by Viorel Barbu, Giuseppe Da Prato, Michael Röckner



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Barbu Viorel Visualizza persona
Titolo: Stochastic Porous Media Equations / / by Viorel Barbu, Giuseppe Da Prato, Michael Röckner Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Edizione: 1st ed. 2016.
Descrizione fisica: 1 online resource (IX, 202 p.)
Disciplina: 519.2
Soggetto topico: Probabilities
Partial differential equations
Fluids
Probability Theory and Stochastic Processes
Partial Differential Equations
Fluid- and Aerodynamics
Persona (resp. second.): Da PratoGiuseppe
RöcknerMichael
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Foreword -- Preface -- Introduction -- Equations with Lipschitz nonlinearities -- Equations with maximal monotone nonlinearities -- Variational approach to stochastic porous media equations -- L1-based approach to existence theory for stochastic porous media equations -- The stochastic porous media equations in Rd -- Transition semigroups and ergodicity of invariant measures -- Kolmogorov equations -- A Two analytical inequalities -- Bibliography -- Glossary -- Translator’s note -- Index.
Sommario/riassunto: Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.
Titolo autorizzato: Stochastic Porous Media Equations  Visualizza cluster
ISBN: 3-319-41069-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910136471503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 0075-8434 ; ; 2163