Vai al contenuto principale della pagina

Advanced Materials and Manufacturing Techniques for Biomedical Applications



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Prasad Arbind Visualizza persona
Titolo: Advanced Materials and Manufacturing Techniques for Biomedical Applications Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2024
©2023
Edizione: 1st ed.
Descrizione fisica: 1 online resource (458 pages)
Disciplina: 610.28
Soggetto topico: Biomedical materials
Tissue engineering
Altri autori: KumarAshwani  
GuptaManoj  
PrasadArbind  
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Acknowledgement -- Section I: Advanced Materials for Biomedical Applications -- Chapter 1 Introduction to Next-Generation Materials for Biomedical Applications -- 1.1 Introduction -- 1.2 Advanced Functional Materials -- 1.3 Market and Requirement of Next-Generation Materials -- 1.4 Metals and Polymeric Biomaterials -- 1.5 Bioabsorbable Biomaterials -- 1.6 Processing of Bioabsorbable Polymeric Biomaterials -- 1.7 Application of Next-Generation Materials in Biomedical Applications -- 1.8 Latest Status of Next Generation Materials in Biomedical Applications -- 1.8.1 Bioabsorbable Devices for Bone Tissue Engineering -- 1.9 Bioresorbable Devices for Skin Tissue Engineering -- 1.10 Challenges and Perspectives -- 1.11 Conclusion -- References -- Chapter 2 Advanced Materials for Surgical Tools and Biomedical Implants -- 2.1 Introduction -- 2.2 Application of Bioengineering to Healthcare -- 2.3 Application in Musculoskeletal and Orthopedic Medicines -- 2.4 Application as a Disposable Medical Device -- 2.5 Application as an Implantable Biosensor -- 2.6 Conclusions -- References -- Chapter 3 Insights into Multifunctional Smart Hydrogels in Wound Healing Applications -- 3.1 Introduction -- 3.2 Architecture of Fabricated Hydrogels -- 3.3 Bactericidal Effect on Wound Repair -- 3.3.1 Historical Perspective -- 3.3.2 Microbial Influence on Wound Healing -- 3.3.3 Wound Tissue Healing Strategies: Case Study -- 3.3.4 Degradation of Wound Healing Factors -- 3.3.5 pH and Wound Healing: Impact of Bacteria -- 3.4 New Frontiers of Hydrogels in Wound Dressing Applications -- 3.4.1 Hemostatic Hydrogel as Wound Dressing -- 3.4.2 Anti-Oxidant and Anti-Inflammatory Hydrogel Wound Dressing -- 3.4.3 Antibacterial Hydrogel Wound Healing -- 3.4.4 Self-Healing Hydrogel Wound Dressing.
3.4.5 Conductive Hydrogel Wound Dressing for Wound Monitoring -- 3.4.6 Chronic Wound Dressing -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Natural Resource-Based Nanobiomaterials: A Sustainable Material for Biomedical Applications -- 4.1 Introduction -- 4.2 Natural Resource-Based Biopolymer -- 4.2.1 Cellulose -- 4.2.2 Lignin -- 4.2.3 Starch -- 4.2.4 Chitosan -- 4.2.5 Silk -- 4.3 Extraction of Nature Resource-Based Nanomaterials -- 4.3.1 Extraction of Cellulose-Based Nanostructures -- 4.3.2 Extraction of Lignin-Based Nanostructures -- 4.3.3 Extraction of Starch-Based Nanostructures -- 4.3.4 Extraction of Chitosan-Based Nanostructures -- 4.3.5 Extraction of Silk Nanostructures -- 4.4 Biomedical Applications of Nature Resource-Based Nanomaterials and Their Nanobiocomposites -- 4.4.1 Nanocellulose in Biomedical Application -- 4.4.2 Nanolignin in Biomedical Application -- 4.4.3 Nanostarch in Biomedical Application -- 4.4.4 Nanochitosan in Biomedical Application -- 4.4.5 Nanosilk in Biomedical Application -- 4.5 Other Applications -- References -- Chapter 5 Biodegradable Magnesium Composites for Orthopedic Applications -- 5.1 Introduction -- 5.1.1 Biomaterials for Bone Implants -- 5.1.2 Magnesium: A Smart Material -- 5.1.3 Materials and Methods -- 5.1.4 Design Requirements for Mg-Based Composites -- 5.1.5 Types of Reinforcements -- 5.2 Materials and Methods -- 5.2.1 Powder Processing Route -- 5.2.2 Casting Route -- 5.3 Results and Discussion -- 5.3.1 Biodegradation Study -- 5.3.2 Biocompatibility -- 5.3.3 In Vivo Assessment of the Nanocomposites for Tissue Compatibility -- 5.4 Conclusion and Future Outlook -- References -- Chapter 6 New Frontiers of Bioinspired Polymer Nanocomposite for Biomedical Applications -- 6.1 Introduction -- 6.1.1 Polymers Used in Biomedical Applications -- 6.1.2 Graphene-Polymer Nanocomposites.
6.2 Methods to Prepare Graphene-Based Polymer Nanocomposites -- 6.3 Magnetic Material - Polymer Nanocomposites -- 6.3.1 Organization of Magnetic Polymer Nanocomposites -- 6.3.2 Residues and Suspensions -- 6.3.3 Tridimensional Solids -- 6.3.4 High-Permeability Materials for the Microwave -- 6.3.5 Piezoelectric Materials -- 6.3.6 Multifunctional Materials -- 6.3.6.1 Transparent Magnetic Materials -- 6.3.6.2 Luminescent Magnetic Materials -- 6.4 Nanostructured Composites -- 6.5 Conclusion and Future Trends -- References -- Chapter 7 Nanohydroxyapatite-Based Composite Materials and Processing -- 7.1 Introduction -- 7.2 Biomaterials -- 7.3 Types of Biomaterials -- 7.3.1 Polymers -- 7.3.2 Composites -- 7.4 Structure of Hydroxyapatite -- 7.5 Nanohydroxyapatite -- 7.5.1 Nanohydroxyapatite/Polymer Composite -- 7.5.2 Nanohydroxyapatite/Poly (Vinyl Alcohol) Composite -- 7.5.3 Nanohydroxyapatite/Sodium Alginate Composite -- 7.5.4 Nanohydroxyapatite/Chitosan Composite -- 7.5.5 Nanohydroxyapatite/Gelatin Composite -- 7.5.6 Nanohydroxyapatite/Chitosan-Gelatin Composite -- 7.5.7 Nanohydroxyapatite-Polylactic Acid Nanocomposites -- 7.6 Cancer Detection and Cell Imaging -- 7.6.1 Size and Morphology -- 7.7 Conclusion -- References -- Chapter 8 Self-Healing Materials and Hydrogel for Biomedical Application -- 8.1 Introduction -- 8.2 Self-Healing Hydrogels -- 8.3 Mechanism of Self-Healing in Hydrogels -- 8.3.1 Physically Cross-Linked Self-Healing Hydrogels -- 8.3.1.1 Hydrogen Bonding -- 8.3.1.2 Ionic Interactions -- 8.3.1.3 Host-Guest Interactions -- 8.3.1.4 Hydrophobic Interactions -- 8.3.2 Chemically Self-Healing Hydrogels -- 8.3.2.1 Imine Bond -- 8.3.2.2 Diel-Alder Reaction -- 8.3.2.3 Disulphide Bond -- 8.3.2.4 Boronate-Diol Complexation -- 8.4 Application of Self-Healing Hydrogel in Biomedical Application -- 8.4.1 Drug Delivery -- 8.4.2 Tissue Engineering Application.
8.4.2.1 Wound Healing -- 8.4.2.2 Neural Tissue Engineering -- 8.4.2.3 Bone Tissue Engineering -- 8.5 Conclusion and Future Prospects -- References -- Section II: Advanced Manufacturing Techniques for Biomedical Applications -- Chapter 9 Biomimetic and Bioinspired Composite Processing for Biomedical Applications -- 9.1 Introduction -- 9.2 Synthesis of Biomimetic and Bioinspired Composite -- 9.2.1 3D (Three-Dimensional) Printing -- 9.2.2 Synthesis of Bioinspired Nanomaterials -- 9.3 Biomaterials for Biomedical Applications -- 9.3.1 Biomaterials-Based Cell Therapy -- 9.3.2 Biomaterials for Cancer Diagnostics -- 9.3.3 Biomaterials for Vaccine Development -- 9.4 Bioinspired Materials -- 9.4.1 One-Dimensional Bioinspired Material -- 9.4.2 Two-Dimensional (2D) Bioinspired Materials -- 9.4.3 Three Dimensional (3D) Bioinspired Materials -- 9.5 Biomimetic Drug Delivery Systems -- 9.5.1 Cell Membrane-Based Drug Delivery System -- 9.5.2 Lipoprotein-Based Drug Delivery System -- 9.6 Artificial Organs -- 9.6.1 Artificial Kidney -- 9.6.2 Artificial Liver -- 9.6.3 Artificial Pancreas -- 9.6.4 Artificial Lung -- 9.7 Neuroprosthetics -- 9.7.1 Sensory Prosthetics -- 9.7.1.1 Auditory Prosthetics -- 9.7.1.2 Visual Prosthetics -- 9.7.2 Motor Prosthetics -- 9.7.3 Cognitive Prosthetics -- 9.8 Conclusion -- References -- Chapter 10 3D Printing in Drug Delivery and Healthcare -- 10.1 Introduction -- 10.2 3D Printing in Healthcare Technologies -- 10.3 Four Dimensions Printing (4D) -- 10.4 Transformation Process and Materials -- 10.4.1 3D Bioprinting -- 10.4.1.1 Bioinks -- 10.4.2 Bioceramics -- 10.4.3 Synthetic Biopolymers -- 10.5 3D Printing's Pharmaceutical Potentials -- 10.5.1 Personalization -- 10.5.2 Personalized Therapy -- 10.6 Drug Administration Routes -- 10.6.1 Transdermal Route -- 10.6.2 Ocular Route -- 10.6.3 Rectal and Vaginal Routes.
10.6.4 Pulmonary Drug Delivery -- 10.7 Custom Design 3D Printed Pharmaceuticals -- 10.8 Excipient Selection for 3D Printing Custom Designs -- 10.9 Customized Medicating of Drugs -- 10.10 Devices for Personalized Topical Treatment -- 10.10.1 Oral Solid Dosage Forms -- 10.10.2 Semisolid Extrusion (EXT) and Inkjet Printing -- 10.10.3 Stencil Printing -- 10.10.4 Implants -- 10.10.5 Tissue Engineering -- 10.10.6 Regenerative Medicine -- 10.10.7 Scaffoldings -- 10.10.8 Organ Printing -- 10.11 Conclusion -- References -- Chapter 11 3D Printing in Biomedical Applications: Techniques and Emerging Trends -- 11.1 Introduction -- 11.2 3D Printing Technologies -- 11.2.1 Digital Model -- 11.2.2 Inkjet-Based 3D Printing -- 11.2.3 Extrusion-Based 3D Printing -- 11.2.4 Laser-Based 3D Printing -- 11.2.5 Bioplotting -- 11.2.6 Fused Deposition Modeling (FDM) -- 11.3 Materials for 3D Printing -- 11.3.1 Hydrogel -- 11.3.2 Polymers (Melt Cured) -- 11.3.3 Metallic Substances -- 11.3.4 Ceramic Substances -- 11.3.5 Living Cells -- 11.4 Biomedical Applications: Recent Trends of 3D-Printing -- 11.4.1 Skin -- 11.4.2 Bone and Dentistry -- 11.4.3 Tissue -- 11.4.4 Drug Delivery -- 11.4.5 Other Applications -- 11.5 Challenges and Opportunities -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 Self-Sustained Nanobiomaterials: Innovative Materials for Biomedical Applications -- 12.1 Introduction -- 12.1.1 Classification of Nanobiomaterials -- 12.1.2 Composition -- 12.1.3 Dimensionality -- 12.1.4 Morphology -- 12.2 Nanobiomaterials Applications -- 12.2.1 Drug Deliverance -- 12.2.2 Oncology -- 12.2.3 Diagnostics -- 12.2.4 Application in Tissue Engineering -- 12.2.5 Antifouling and Antimicrobial Nanobiomaterials -- 12.3 Challenge in the Clinical Rendition of Nanobiomaterials -- 12.3.1 Nanotoxicity -- 12.3.2 Regulatory Considerations -- 12.3.3 Commercialization.
12.4 Conclusion and Future Directions.
Sommario/riassunto: This book explores advanced materials and manufacturing techniques specifically designed for biomedical applications. Edited by Arbind Prasad, Ashwani Kumar, and Manoj Gupta, it delves into the development and utilization of materials such as bioabsorbable biomaterials, smart hydrogels, biodegradable magnesium composites, and bioinspired polymer nanocomposites. The text highlights their applications in surgical tools, wound healing, orthopedic implants, and tissue engineering. It also covers innovative manufacturing techniques like 3D printing and biomimetic processing. Aimed at engineers, researchers, and health professionals, the book serves as a comprehensive resource on the latest advancements in biomedical materials and their implications for healthcare.
Titolo autorizzato: Advanced Materials and Manufacturing Techniques for Biomedical Applications  Visualizza cluster
ISBN: 9781394166961
1394166966
9781394166985
1394166982
9781394166978
1394166974
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910877669603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui