Vai al contenuto principale della pagina
Autore: |
Thomas Jince
![]() |
Titolo: |
Alkaline Anion Exchange Membranes for Fuel Cells : From Tailored Materials to Novel Applications
![]() |
Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
©2024 | |
Edizione: | 1st ed. |
Descrizione fisica: | 1 online resource (451 pages) |
Soggetto topico: | Fuel cells |
Membranes (Technology) | |
Altri autori: |
SchechterAlex
![]() ![]() ![]() ![]() |
Nota di contenuto: | Cover -- Title Page -- Copyright Page -- Contents -- Preface -- 1 An Introduction to Polymeric Electrolyte Alkaline Anion Exchange Membranes -- 1.1 Introduction -- 1.2 Different Types of Electrolytes -- 1.3 Why Polymer Electrolytes Are Important? -- 1.4 Anion Exchange Membrane (AEM) -- 1.4.1 Fundamental Concepts of Anion Exchange Membranes as Polymer Electrolytes -- 1.4.2 Classification of AEM -- 1.4.3 Pros and Cons of AEM -- 1.4.4 Application of AEM -- 1.5 AEMs in Fuel Cells -- 1.6 Conclusion and Outlook -- References -- 2 Historical and Recent Developments inAnion Exchange Membranes (AEM) -- 2.1 Introduction -- 2.2 Fuel Cell: Conventional Versus Modern Approach -- 2.3 Role of AEM in Fuel Cell Technology -- 2.4 Preparation of AEMs -- 2.5 Challenges in Existing AEMs -- 2.6 Recent Advancement -- 2.7 Major Challenges -- 2.8 Commercially Available AEMs -- 2.9 Current Scenario and Future Market -- 2.10 Summary and Concluding Remarks -- References -- 3 Fabrication Processes and Characterization Proceduresof Anion Exchange Membranes -- 3.1 Introduction -- 3.2 Fabrication Processes of Anion Exchange Membranes -- 3.2.1 AEM of Cationic Charged Polymers -- 3.2.2 AEMs of Ion-Solvating Polymers -- 3.2.3 AEMs with Nanofibers -- 3.2.4 Hybrid AEMs -- 3.2.5 Recent Developments in AEMs -- 3.3 Characterization Procedures of AEMs -- 3.3.1 Ionic Conductivity -- 3.3.2 IEC, Swelling Ratio, and Water Content -- 3.3.3 Mechanical and Thermal Properties -- 3.3.4 Chemical Stability -- 3.3.5 Chemical Composition and Morphological Characterization -- 3.3.6 Other Characterizations -- 3.4 Conclusions -- References -- 4 Types of Polymeric Electrolyte Anion Exchange Membranes: Heterogeneous and Grafted Membranes, Interpenetrating Polymer Networks and Homogeneous Membranes -- 4.1 Heterogenous Anion Exchange Membranes -- 4.1.1 Ion-Solvating Polymers -- 4.1.2 Hybrid Membranes. |
4.2 Grafted Anion Exchange Membranes -- 4.2.1 Radiation-Grafted Membranes -- 4.2.2 Side Chain Grafted Membranes -- 4.2.3 Long-side-chain Grafted Membranes -- 4.3 Interpenetrating Anion Exchange Membranes -- 4.3.1 Anion Exchange Membranes Based on Interpenetrating Polymer Networks (IPN) -- 4.3.2 Anion Exchange Membranes Based on Semi-Interpenetrating Polymer Networks (Semi-IPN) -- 4.4 Homogenous Membranes -- 4.4.1 Homogenous Membranes Based on Poly(arylene ether)s -- 4.4.2 Homogenous Membranes Based on Poly(styrene)s -- 4.4.3 Homogenous Membranes Based on Poly(2,6-dimethyl-1,4-phenylene oxide) -- 4.4.4 Fluorene-Containing Homogenous Membranes -- 4.4.5 Homogenous Membranes Based on Polyolefins -- 4.4.6 Other Kinds of Homogenous Membranes -- 4.5 Conclusions -- References -- 5 Proton Exchange Membranes Versus Anion Exchange Membranes -- 5.1 Introduction -- 5.2 Proton Exchange Membrane (PEM) -- 5.2.1 Classification of PEM Membranes Based on the Materials of Synthesis -- 5.2.1.1 Perfluorinated Ionomeric Membranes -- 5.2.1.2 Partially Fluorinated Hydrocarbon Membranes -- 5.2.1.3 Non-fluorinated Hydrocarbon Membranes -- 5.2.1.4 Acid-Base Complexes -- 5.2.2 Preparation Methods of PEM -- 5.2.3 Proton Transport Mechanism in PEM -- 5.2.4 Current State of Art of PEM -- 5.3 Comparison with AEM -- 5.3.1 Materials Used for Preparations -- 5.3.2 Investigative Methods and Measurement for Ion-Exchange Membranes -- 5.3.2.1 Ionic Conductivity -- 5.3.2.2 Water Absorption or Swelling Index -- 5.3.2.3 Ion-Exchange Capacity (IEC) of the Membrane -- 5.3.2.4 Thermal Stability and Mechanical Strength -- 5.3.2.5 Durability of the Membranes -- 5.3.3 Water Management -- 5.3.4 Transport Mechanism -- 5.3.5 Catalyst Used in PEMFC and AEMFC -- 5.3.6 MEA Fabrication -- 5.3.7 Fuels Used in Fuel Cells -- 5.3.8 Fuel Cell Efficiency -- 5.4 Conclusion -- References. | |
6 Transport and Conductive Mechanisms in Anion Exchange Membranes -- 6.1 Introduction -- 6.2 Transport Mechanisms of Hydroxide Ion in AEMs -- 6.3 AEM Structure-Transport Efficiency Relationships -- 6.4 Ion Conductivity Measurement -- 6.5 Carbonation Process in AEMs -- 6.5.1 Elucidating the Dynamics of Carbonation -- 6.5.2 Impact of Carbonation on AEM and AEMFC -- 6.5.3 Strategies to Avoid Carbonation of OH Ions -- 6.6 Conclusion and Outlook -- References -- 7 Anion Exchange Membranes Based on Quaternary Ammonium Cations and Modified Quaternary Ammonium Cations -- 7.1 Introduction -- 7.1.1 Background of AEMFC Invention -- 7.2 Quaternary Ammonium (QA)-Based AEMs - Recent Developments and Performances -- 7.3 Other Factors Affecting Performance of Fuel Cells -- 7.4 Summary and Perspectives -- Acknowledgments -- References -- 8 Guanidinium Cations and Their Derivatives-Based Anion Exchange Membranes -- 8.1 Introduction -- 8.2 General Synthetic Method of Various Guanidiniums -- 8.3 Degradation Mechanism and Alkaline Stability of Guanidinium Cations -- 8.4 Preparation of Guanidinium and Their Derivative-Based AEMs -- 8.4.1 Benzyl-guanidinium AEMs -- 8.4.2 Alkyl-guanidinium AEMs -- 8.4.3 Aryl-guanidinium AEMs -- 8.4.4 Other Guanidinium-Based AEMs -- 8.5 Prospect -- References -- 9 Anion Exchange Membranes Based on Imidazolium and Triazolium Cations -- 9.1 Introduction -- 9.2 AEMs Based on Imidazolium Cations -- 9.2.1 AEMs Based on Imidazolium-type Ionic Liquids -- 9.2.2 Imidazole Containing Polymers and Composites -- 9.3 AEM Based on Triazolium Cations -- 9.4 Summary and Future Perspectives -- Acknowledgments -- References -- 10 Radiation-Grafted and Cross-linked Polymers-Based Anion Exchange Membranes -- 10.1 Historic Overview -- 10.2 Sources of Radiation -- 10.3 Types of Radiation-Induced Grafting -- 10.3.1 Absorbed Dose -- 10.3.2 Dose Rate. | |
10.3.3 Atmosphere During Irradiation -- 10.3.4 Temperature During Irradiation -- 10.4 Base Polymer -- 10.5 Grafting Solution -- 10.6 Physicochemical Properties of RG-AEMs -- 10.7 Cross-linking in AEMs -- 10.7.1 Physical Cross-linking -- 10.7.2 Chemical Cross-linking -- 10.7.2.1 Cross-linking with Diamine Agents -- 10.7.2.2 Chemical Cross-linking Reaction with Other Agents -- 10.7.2.3 Other Methods of Producing Cross-linked Membranes -- 10.8 Conclusions -- References -- 11 Degradation Mechanisms of Anion Exchange Membranes due to Alkali Hydrolysis and Radical Oxidative Species -- 11.1 Introduction -- 11.2 Necessity to Investigate the Degradation Mechanism in AEMs -- 11.3 Structure and Degradation Mechanism of Tailored Anion Exchange Groups and Polymers -- 11.3.1 Alkaline Hydrolysis of Cationic Head Groups -- 11.3.2 Alkaline Hydrolysis of Novel Metallocenium Based AEMs -- 11.3.3 Alkaline Hydrolysis of Polymers -- 11.3.3.1 Degradation Mechanism in Poly(arylene ethers) (PAEs) -- 11.3.3.2 Degradation Mechanism in Fluorinated Polymer -- 11.3.3.3 Degradation Mechanism in Poly(benzimidazole) Based Polymers -- 11.3.3.4 Degradation Mechanism in Poly(alkyl) and Poly(arene) Based Polymers -- 11.3.4 Free Radical Oxidative Degradation of AEM -- 11.4 Prospects and Outlook -- 11.5 Conclusion -- References -- 12 Computational Approaches to Alkaline Anion Exchange Membranes -- 12.1 Introduction -- 12.2 Why Computational Studies Are Important in Anion Exchange Membranes? -- 12.3 Tools of In Silico Approaches in Anion Exchange Membranes -- 12.3.1 Electronic Structure Methods in Anion Exchange Membranes -- 12.3.1.1 Analysis on HOMO-LUMO Energies and Mulliken Charges -- 12.3.1.2 Analysis on ESP -- 12.3.1.3 Analysis on Chemical Structure and Bonding Nature -- 12.3.1.4 Analysis on Degradation Pathways -- 12.3.2 Molecular Dynamics in Anion Exchange Membranes. | |
12.3.3 Continuum Modeling and Simulation in Anion Exchange Membranes -- 12.3.4 Monte Carlo Simulations in Anion Exchange Membranes -- 12.3.5 Machine Learning in Anion Exchange Membranes -- 12.4 Challenges and Outlook -- 12.5 Conclusion -- References -- 13 An Overview of Commercial and Non-commercial Anion Exchange Membranes -- 13.1 Introduction -- 13.1.1 Characteristics and Existing Problems of Commercial Alkaline Anion Exchange Membranes -- 13.1.1.1 Fumatech: Fumasep -- 13.1.1.2 Tokuyama: A201 -- 13.1.1.3 Ionomr: AEMION -- 13.1.1.4 Dioxide Materials: Sustainion -- 13.1.1.5 Orion Polymer: Orion TM1 -- 13.1.1.6 Xergy: Xion-Dappion, Xion-Durion, Xion-Pention -- 13.1.1.7 Versogen: PiperION -- 13.1.1.8 Membranes International Inc.: AMI-7001 -- 13.1.1.9 Asahi Glass: Selemion AMV -- 13.1.2 Characteristics and Existing Problems of Non-Commercial Alkaline Anion Exchange Membrane -- 13.1.3 Strategies to Improve the Properties of AEMs -- 13.1.3.1 The Regulation of Microphase Morphologies -- 13.1.3.2 Constructing Free Volumes -- 13.1.3.3 The Introduction of Cross-linking Structures -- 13.1.3.4 Other Physical Methods -- 13.1.3.5 The Development of Novel Cationic Functional Groups and Aryl Ether-free Main Chains with High Stability -- 13.2 Summary and Outlooks -- Acknowledgment -- References -- 14 Membrane Electrode Assembly Preparation for Anion Exchange Membrane Fuel Cell (AEMFC): Selection of Ionomers and How to Avoid CO2 Poisoning -- 14.1 The Preparation of Membrane Electrode Assembly -- 14.2 Selection of Ionomers -- 14.2.1 Commercial Ionomers -- 14.2.2 Custom-made Ionomers -- 14.3 Effect of CO2 on AEMFCs -- 14.3.1 Effect of CO2 on Ex Situ Measured Conductivity -- 14.3.2 Effect of CO2 on Electrochemical Reactions on the Electrodes -- 14.3.3 Effect of CO2 on Fuel Cell Performance -- 14.4 Strategies to Avoid CO2 Poisoning. | |
14.4.1 Reducing HCO3/CO32 Concentration Through Self-purging. | |
Sommario/riassunto: | This book provides a comprehensive overview of alkaline anion exchange membranes (AEMs) and their applications in fuel cells. It covers the fundamental concepts, historical developments, fabrication processes, and recent advancements in AEM technology. The book also explores different types of polymeric electrolyte membranes, the comparison between proton and anion exchange membranes, and the various cations used in AEMs. Additionally, it discusses the challenges, degradation mechanisms, and computational approaches associated with AEMs. Edited by experts in the field, this book is intended for researchers, engineers, and students interested in fuel cell technology and materials science. |
Titolo autorizzato: | Alkaline Anion Exchange Membranes for Fuel Cells ![]() |
ISBN: | 9783527837588 |
3527837582 | |
9783527837601 | |
3527837604 | |
Formato: | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910876865903321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |