Vai al contenuto principale della pagina

Accelerating Discoveries in Data Science and Artificial Intelligence I : ICDSAI 2023, LIET Vizianagaram, India, April 24-25



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Lin Frank M Visualizza persona
Titolo: Accelerating Discoveries in Data Science and Artificial Intelligence I : ICDSAI 2023, LIET Vizianagaram, India, April 24-25 Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing AG, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (862 pages)
Altri autori: PatelAshokkumar  
KesswaniNishtha  
SambanaBosubabu  
Nota di contenuto: Intro -- Preface: Volume 1 -- Organization -- Contents -- Analysis of Fraud Detection Approaches in Online Payment Systems -- 1 Introduction -- 2 Fraud Detection and Sector-Specific Fraud -- 3 Scenarios of Credit Card Fraud -- 4 Analysing Unbalanced Dataset -- References -- Investigating Context-Aware Sentiment Classification Using Machine Learning Algorithms -- 1 Introduction -- 1.1 Context Overview -- 2 Literature Review -- 3 Modelling -- 4 Challenges -- 5 Conclusion -- References -- Opioid Recommendation to Arthroplasty Patients, Using Pearson Correlation and Shapiro Wilk Test -- 1 Introduction -- 2 Related Works -- 3 Proposed System -- 4 Result Analysis -- 5 Conclusion -- References -- Sindhi POS Tagger Using LSTM and Pre-Trained Word Embeddings -- 1 Introduction -- 2 Literature Review -- 3 Experimental Setup -- 4 Proposed System -- 5 Evaluation -- 6 Conclusion -- References -- An Early-Stage Colorectal Cancer Detection from Colonoscopy Images Using Enhanced Res-UNET -- 1 Introduction -- 2 Literature Review -- 3 Deep Learning -- 3.1 U-Net with Base Convolution Neural Network -- 4 Proposed Model (U-Net with Base as ResNet) -- 4.1 ResNet-Based Encoder -- 4.2 ResNet-Based Decoder -- 5 Experimental Results and Analysis -- 5.1 Dataset -- 5.2 Data Augmentation -- 5.3 Experimental Setup -- 5.4 Results and Discussion -- 6 Conclusion -- References -- Prediction of Rice Leaf Diseases at an Early Stage Using Deep Neural Networks -- 1 Introduction -- 1.1 Rice Leaf Diseases -- 2 Literature Review -- 3 Proposed Model -- 3.1 DenseNet-201 -- 3.2 Naive Inception Module -- 3.3 System Design -- 4 Data Accumulation and Preparation -- 4.1 Data Augmentation and Preprocessing -- 5 Results and Discussion -- 6 Conclusion and Future Scope -- References -- A Study of the Impact of Implementing a Procedure for Creation of Risk Factor Software -- 1 Introduction.
1.1 Necessity for Software Engineering -- 2 Kinds of Necessities -- References -- Chat Analysis and Spam Detection of WhatsApp Using Machine Learning -- 1 Introduction -- 2 Related Works -- 2.1 Observations on the Existing System -- 3 Proposed System -- 3.1 Proposed System Architecture -- 4 Implementation -- 4.1 Text Messages Collection -- 4.2 Purification of Data -- 4.3 Text Preprocessing -- 4.4 Data Set Balancing (Undersampling or Downsampling) [5] -- 4.5 Text Vectorization [14] -- 4.6 Building and Testing the Classifier -- 5 Results and Analysis (Figs. 2, 3, 4, 5, 6, 7, 8, and 9) -- 6 Conclusions and Future Scope -- References -- A Study of Hate Speech Detection Using Different Models -- 1 Introduction -- 2 Literature Survey -- 3 Problem Statement -- 3.1 Existing System -- 3.2 Proposed System -- 4 Results -- 5 Conclusion and Future Scope -- References -- Image Feature Narrator for the Blind -- 1 Introduction -- 2 Literature Survey -- 3 Existing System -- 4 Proposed System -- 5 Basic Concepts -- 6 System Architecture -- 7 System Block Diagram -- 8 Datasets -- 9 Experiment and Result -- 10 Conclusion -- References -- Recognition of Indian Gestural Language Through Neural Networks: Narrative Approach -- 1 Introduction -- 2 Indian Gestural System -- 2.1 Types of Gestures -- 2.2 Related Work -- 3 Indian Gestural Language: Sign Language -- 3.1 Neural Network -- 3.2 Supervised Learning -- 3.3 Unsupervised Learning -- 4 Comparative Analysis by Neural Network on Indian Gestural Language -- 4.1 Analysis of Various Existing Methodologies -- 5 Comparison Findings -- 6 Conclusions and Future Scope -- References -- Frequency and Voltage Control of Multi-Area Multisource Power System Using Whale Optimization Algorithm -- 1 Introduction -- 2 Power System Model -- 3 Proposed Control Methodology -- 4 Whale Optimization Algorithm.
5 Implementation and Results Discussion -- 5.1 Optimization of 2-Area IPS -- 5.2 Optimal Values of Controller Parameters -- 5.3 Result Analysis of 2-Area IPS -- 6 Conclusion and Future and Work -- References -- Tumor Prediction Using Microarray Gene Expression Profiles Through SVM and CBFS -- 1 Introduction -- 2 Literature Survey -- 3 Proposed Classification Algorithm -- 3.1 Inductive Support Vector Machines (ISVMs) -- 4 Proposed Feature Selection Algorithm -- 4.1 Consistency Based Feature Selection (CBFS) -- 5 Existing Feature Selection Algorithms -- 5.1 Signal to Noise Ratio (SNR) -- 6 Experiment Analysis and Results -- 6.1 Datasets -- 6.2 Choice of Features -- 6.3 Input Parameters -- 6.4 Performance Assessment -- 6.5 Report -- 7 Conclusion and Discussion -- References -- Advanced Machine Learning Approaches for Improving Traffic Flow Predictions in Smart Transportation Systems -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 4 Result and Analysis -- 5 Conclusions -- References -- Deep Learning-Based Surrounding Descriptor for the Visually Challenged -- 1 Introduction -- 2 Literature Survey -- 3 Proposed System Methodology -- 3.1 Importing Images -- 3.2 Importing Captions -- 3.3 Visualizing -- 3.4 Image Preprocessing -- 3.5 Text Preprocessing -- 3.6 Image Feature Extraction -- 3.7 Splitting the Dataset -- 3.8 Training the Model -- 3.9 Evaluate the Model -- 3.10 Predict and Convert Text to Speech -- 4 Experimental Result -- 5 Conclusion -- References -- Wind Power Prediction Using Artificial Neural Network Model: A Case Study -- 1 Introduction -- 2 Methodology -- 2.1 Wind Energy Dataset -- 2.2 Artificial Neural Networks -- 3 Results and Discussion -- 4 Conclusion -- References -- Optimizing Wind Farm Design by Incorporating Wind Turbines of Diverse Hub Heights Through PSO -- 1 Introduction -- 2 Methodology.
2.1 Mathematical Modelling of Wake Effect -- 2.2 Particle Swarm (PSO) Algorithm for Optimization -- 2.3 Definition of the Problem Statement -- 3 Results and Discussion -- 3.1 Scenario with Consistent Velocity and Direction of Wind -- 3.2 The Scenario of Fixed Wind Velocity and Changing Direction -- 3.3 Discussion and Comparison -- 4 Conclusion -- References -- Use of Regression Algorithm for Bike Ride Sharing DemandProjection -- 1 Introduction -- 2 Background Study -- 3 Methodology -- 3.1 Data Analysis (Pre-processing) -- 3.2 Feature Engineering -- 3.3 Evaluation and Comparative Analysis of Metrics -- 3.4 Model Selection and Hyperparameter Tuning -- 4 Results -- 5 Conclusion -- 6 Discussion and Future Work -- References -- Quantifiable Procedures for Covid Improvement Expectation Cox Regression Model -- 1 Introduction -- 2 Analysis and Prognostication -- 2.1 Cox's Regression Model -- 2.2 Cox's Partial Probability -- 2.3 Development of the Cox's Regression Model -- 3 Tree Diagram with Seven Nodes (Fig. 2) -- 3.1 Recovered Cases -- 4 Scope of Cox's Model in Coronavirus -- 5 Conclusion -- References -- Bayesian Optimized Random Forest Classifier for Improved Credit Card Fraud Detection: Overcoming Challenges and Limitations -- 1 Introduction -- 2 Literature Review -- 3 Proposed Model Architecture for RFC and BORFC -- 3.1 Dataset Collection and Analysis -- 3.2 Data Pre-processing -- 3.3 Feature Selection Using Binary Particle Swarm Optimization (BPSO) -- 3.4 Random Forest Classifier Algorithm -- 3.5 Bayesian Optimization of Random Forest Classifier Algorithm -- 4 Simulated Results -- 5 Conclusion and Future Work -- References -- Early Stage Detection of PCOS Using Deep Learning -- 1 Introduction -- 1.1 Problem Background -- 1.2 Problem Definition -- 2 Related Work -- 3 Methodology -- 3.1 Data Collection -- 3.2 Building CNN Models.
4 Results and Discussion -- 5 Conclusion -- 6 Future Enhancements -- References -- Challenges and Advancement in Federated Recommendation System: A Comprehensive Review -- 1 Introduction -- 2 Federated Recommendation Systems -- 2.1 Challenges in Federated Recommendation Systems -- 2.2 Assortment of Federated Recommendation Systems -- 3 Comparative Analysis of Various Recommendation Models -- 4 Communication Efficiency, Privacy, and Security in Federated Systems -- 5 Tools and Frameworks for FRS -- 6 Conclusion -- References -- Conditional DCGAN for Targeted Generation of MNIST Handwritten Digits -- 1 Introduction -- 2 Methods -- 2.1 cDCGAN (Fig. 1) -- 3 Experiment -- 3.1 Dataset -- 3.2 Hyperparameters -- 4 Comparison and Discussion -- 4.1 Epochs: 10 Vs 20 Vs 30 -- 4.2 Batch Size: 32 Vs 64 Vs 128 -- 4.3 Optimizer: Adam Vs SGD -- 4.4 Activation Function: LeakyReLU Vs ReLU -- 4.5 Learning Rate (LR) -- 4.6 Loss Function -- 5 Results Comparison -- 6 Results -- References -- Predicting Cryptocurrency Price Using Multiple Deep LearningModels -- 1 Introduction -- 1.1 Motivation -- 2 Literature Survey -- 3 Existing System -- 4 Proposed System -- 4.1 Proposed Dataset -- 4.2 Proposed Algorithms -- 5 Experimental Results -- 6 Conclusion -- 7 Future Enhancements -- References -- Efficient Object Detection, Segmentation, and Recognition Using YOLO Model -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Data Collection and Visualization -- 3.2 Model Building -- 3.3 Detection and Recognition -- 3.4 Conotour Segmentation -- 4 Results -- 5 Conclusion and Future Scope -- References -- Music Genre Classification Using XGB Boost -- 1 Introduction -- 2 Literature Survey -- 3 Methodology -- 4 Proposed Approach -- 5 Implementation -- 6 Results -- 7 Conclusion -- 8 Future Scope -- References -- Semantic Web 3.0 Streaming-Based Music Application.
1 Introduction.
Titolo autorizzato: Accelerating Discoveries in Data Science and Artificial Intelligence I  Visualizza cluster
ISBN: 3-031-51167-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910865293703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Springer Proceedings in Mathematics and Statistics Series