Vai al contenuto principale della pagina

Machine Learning Applications in Medicine and Biology / / edited by Ammar Ahmed, Joseph Picone



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Machine Learning Applications in Medicine and Biology / / edited by Ammar Ahmed, Joseph Picone Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Edizione: 1st ed. 2024.
Descrizione fisica: 1 online resource (170 pages)
Disciplina: 060
Soggetto topico: Biomedical engineering
Imaging systems in biology
Machine learning
Signal processing
Biomedical Engineering and Bioengineering
Biological Imaging
Machine Learning
Biomedical Devices and Instrumentation
Digital and Analog Signal Processing
Persona (resp. second.): PiconeJoseph
AhmedAmmar, 1983-
Nota di contenuto: Introduction -- Signal and Image Analysis (EEG, ECG, MRI) -- Machine Learning -- Data Mining and Classification -- Big Data -- Index.
Sommario/riassunto: This book combines selected papers from the 2022 IEEE Signal Processing in Medicine and Biology Symposium (IEEE SPMB) held at Temple University. The symposium presents multidisciplinary research in the life sciences. Topics covered include: Signal and image analysis (EEG, ECG, MRI) Machine learning Data mining and classification Big data resources Applications of particular interest at the 2022 symposium included digital pathology, computational biology, and quantum computing. The book features tutorials and examples of successful applications that will appeal to a wide range of professionals and researchers in signal processing, medicine, and biology. Presents an interdisciplinary look at research trends; Promotes collaboration between practitioners and researchers; Includes tutorials and examples of successful applications. .
Titolo autorizzato: Machine Learning Applications in Medicine and Biology  Visualizza cluster
ISBN: 3-031-51893-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910847073903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui