Vai al contenuto principale della pagina

Microwave and wireless synthesizers : theory and design / / Ulrich L. Rohde, Enrico Rubiola, Jerry C. Whitaker



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Rohde Ulrich L. Visualizza persona
Titolo: Microwave and wireless synthesizers : theory and design / / Ulrich L. Rohde, Enrico Rubiola, Jerry C. Whitaker Visualizza cluster
Pubblicazione: Hoboken, NJ : , : Wiley, , 2021
©2021
Edizione: Second edition.
Descrizione fisica: 1 online resource (xxii, 794 pages) : illustrations
Disciplina: 621.3815486
Soggetto topico: Frequency synthesizers - Design and construction
Phase-locked loops
Digital electronics
Microwave circuits - Design and construction
Radio frequency
Persona (resp. second.): RubiolaEnrico <1957->
WhitakerJerry C.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Author Biography -- Preface -- Important Notations -- Chapter 1 Loop Fundamentals -- 1-1 Introduction to Linear Loops -- 1-2 Characteristics of a Loop -- 1-3 Digital Loops -- 1-4 Type 1 First‐Order Loop -- 1-5 Type 1 Second‐Order Loop -- 1-6 Type 2 Second‐Order Loop -- 1-6-1 Transient Behavior of Digital Loops Using Tri‐state Phase Detectors -- 1-7 Type 2 Third‐Order Loop -- 1-7-1 Transfer Function of Type 2 Third‐Order Loop -- 1-7-2 FM Noise Suppression -- 1-8 Higher‐Order Loops -- 1-8-1 Fifth‐Order Loop Transient Response -- 1-9 Digital Loops with Mixers -- 1-10 Acquisition -- 1-10-0 Example 1 -- 1-10-1 Pull‐in Performance of the Digital Loop -- 1-10-2 Coarse Steering of the VCO as an Acquisition Aid -- 1-10-3 Loop Stability -- References -- Suggested Reading -- Chapter 2 ALMOST ALL ABOUT PHASE NOISE -- 2-1 INTRODUCTION TO PHASE NOISE -- 2-1-1 The Clock Signal -- 2-1-2 The Power Spectral Density (PSD) -- 2-1-3 Basics of Noise -- 2-1-4 Phase and Frequency Noise -- 2-2 THE ALLAN VARIANCE AND OTHER TWO‐SAMPLE VARIANCES -- 2-2-1 Frequency Counters -- 2-2-2 The Two‐Sample Variances AVAR, MVAR, and PVAR -- 2-2-3 Conversion from Spectra to Two‐Sample Variances -- 2-3 PHASE NOISE IN COMPONENTS -- 2-3-1 Amplifiers -- 2-3-2 Frequency Dividers -- 2-3-3 Frequency Multipliers -- 2-3-4 Direct Digital Synthesizer (DDS) -- 2-3-5 Phase Detectors -- 2-3-6 Noise Contribution from Power Supplies -- 2-4 PHASE NOISE IN OSCILLATORS -- 2-4-1 Modern View of the Leeson Model -- 2-4-2 Circumventing the Resonator's Thermal Noise -- 2-4-3 Oscillator Hacking -- 2-5 THE MEASUREMENT OF PHASE NOISE -- 2-5-1 Double‐Balanced Mixer Instruments -- 2-5-2 The Cross‐Spectrum Method -- 2-5-3 Digital Instruments -- 2-5-4 Pitfalls and Limitations of the Cross‐Spectrum Measurements -- 2-5-5 The Bridge (Interferometric) Method.
2-5-6 Artifacts and Oddities Often Found in the Real World -- 2-5 References -- 2-5 SUGGESTED READINGS -- 2-5-6 Power spectra and Fourier transform -- 2-5-6 Electromagnetic Compatibility -- 2-5-6 General Aspects of Noise -- 2-5-6 Phase Noise, Frequency Stability, and Measurements -- 2-5-6 Amplifiers -- 2-5-6 Frequency Dividers -- 2-5-6 Frequency Multipliers -- 2-5-6 DDS -- 2-5-6 Phase‐Frequency Detectors -- 2-5-6 Oscillators -- 2-5-6 Resonators -- 2-5-6 Double‐Balanced Mixer -- Chapter 3 Special Loops -- 3-1 Introduction -- 3-2 Direct Digital Synthesis Techniques -- 3-2-1 A First Look at Fractional N -- 3-2-2 Digital Waveform Synthesizers -- 3-2-3 Signal Quality -- 3-2-4 Future Prospects -- 3-3 Loops with Delay Line as Phase Comparators -- 3-4 Fractional Division N Synthesizers -- 3-4-1 Example Implementation -- 3-4-2 Some Special Past Patents for Fractional Division N Synthesizers -- References -- Bibliography -- FRACTIONAL DIVISION N READINGS -- Chapter 4 LOOP COMPONENTS -- 4-1 INTRODUCTION TO OSCILLATORS AND THEIR MATHEMATICAL TREATMENT -- 4-2 THE COLPITTS OSCILLATOR -- 4-2-1 Linear Approach -- 4-2-2 Design Example for a 350 MHz Fixed‐Frequency Colpitts Oscillator -- 4-2-3 Validation Circuits -- 4-2-4 Series Feedback Oscillator [5, Appendix A, pp. 384-388] -- 4-2-5 2400 MHz MOSFET‐Based Push-Pull Oscillator -- 4-2-6 Oscillators for IC Applications -- 4-2-7 Noise in Semiconductors and Circuits -- 4-2-8 Summary -- 4-3 USE OF TUNING DIODES -- 4-3-1 Diode Tuned Resonant Circuits -- 4-3-2 Practical Circuits -- 4-4 USE OF DIODE SWITCHES -- 4-4-1 Diode Switches for Electronic Band Selection -- 4-4-2 Use of Diodes for Frequency Multiplication -- 4-5 REFERENCE FREQUENCY STANDARDS -- 4-5-1 Specifying Oscillators -- 4-5-2 Typical Examples of Crystal Oscillator Specifications -- 4-6 MIXER APPLICATIONS -- 4-7 PHASE/FREQUENCY COMPARATORS -- 4-7-1 Diode Rings.
4-7-2 Exclusive ORs -- 4-7-3 Sample/Hold Detectors -- 4-7-4 Edge‐Triggered JK Master/Slave Flip‐Flops -- 4-7-5 Digital Tri‐State Comparators -- 4-8 WIDEBAND HIGH‐GAIN AMPLIFIERS -- 4-8-1 Summation Amplifiers -- 4-8-2 Differential Limiters -- 4-8-3 Isolation Amplifiers -- 4-8-4 Example Implementations -- 4-9 PROGRAMMABLE DIVIDERS -- 4-9-1 Asynchronous Counters -- 4-9-2 Programmable Synchronous Up‐/Down‐Counters -- 4-9-3 Advanced Implementation Example -- 4-9-4 Swallow Counters/Dual‐Modulus Counters -- 4-9-5 Look‐Ahead and Delay Compensation -- 4-10 LOOP FILTERS -- 4-10-1 Passive RC Filters -- 4-10-2 Active RC Filters -- 4-10-3 Active Second‐Order Low‐Pass Filters -- 4-10-4 Passive LC Filters -- 4-10-5 Spur‐Suppression Techniques -- 4-11 MICROWAVE OSCILLATOR DESIGN -- 4-11-1 The Compressed Smith Chart -- 4-11-2 Series or Parallel Resonance -- 4-11-3 Two‐Port Oscillator Design -- 4-12 MICROWAVE RESONATORS -- 4-12-1 SAW Oscillators -- 4-12-2 Dielectric Resonators -- 4-12-3 YIG Oscillators -- 4-12-4 Varactor Resonators -- 4-12-5 Ceramic Resonators -- 4-12 REFERENCES -- 4-12 SUGGESTED READINGS -- 4-12-5 Section 4‐3 Documents -- 4-12-5 Section 4‐5 Documents -- 4-12-5 Section 4‐6 Documents -- 4-12-5 Section 4‐7 Documents -- 4-12-5 Section 4‐8 Documents -- 4-12-5 Section 4.9 Documents -- 4-12-5 Section 4.10 Documents -- 4-12-5 Section 4.11 Documents -- 4-12-5 Section 4.12 Documents -- Chapter 5 Digital PLL Synthesizers -- 5-1 Multiloop Synthesizers Using Different Techniques -- 5-1-1 Direct Frequency Synthesis -- 5-1-2 Multiple Loops -- 5-2 System Analysis -- 5-3 Low‐Noise Microwave Synthesizers -- 5-3-1 Building Blocks -- 5-3-2 Output Loop Response -- 5-3-3 Low Phase Noise References: Frequency Standards -- 5-3-4 Critical Stage -- 5-3-5 Time Domain Analysis -- 5-3-6 Summary -- 5-3-7 Two Commercial Synthesizer Examples.
5-4 Microprocessor Applications in Synthesizers -- 5-5 Transceiver Applications -- 5-6 About Bits, Symbols, and Waveforms -- 5-6-1 Representation of a Modulated RF Carrier -- 5-6-2 Generation of the Modulated Carrier -- 5-6-3 Putting It all Together -- 5-6-4 Combination of Techniques -- 5-6 Acknowledgments -- 5-6 References -- 5-6 Bibliography and Suggested Reading -- Chapter 6 A High‐Performance Hybrid Synthesizer -- 6-1 Introduction -- 6-2 Basic Synthesizer Approach -- 6-3 Loop Filter Design -- 6-4 Summary -- Bibliography -- Chapter A Mathematical Review -- A-1 FUNCTIONS OF A COMPLEX VARIABLE -- A-2 COMPLEX PLANES -- A-2-1 Functions in the Complex Frequency Plane -- A-3 BODE DIAGRAM -- A-4 LAPLACE TRANSFORM -- A-4-1 The Step Function -- A-4-2 The Ramp -- A-4-3 Linearity Theorem -- A-4-4 Differentiation and Integration -- A-4-5 Initial Value Theorem -- A-4-6 Final Value Theorem -- A-4-7 The Active Integrator -- A-4-8 Locking Behavior of the PLL -- A-5 LOW‐NOISE OSCILLATOR DESIGN -- A-5-1 Example Implementation -- A-6 OSCILLATOR AMPLITUDE STABILIZATION -- A-7 VERY LOW PHASE NOISE VCO FOR 800 MHZ -- REFERENCES -- Chapter B A General‐Purpose Nonlinear Approach to the Computation of Sideband Phase Noise in Free‐Running Microwave and RF Oscillators -- B-1 Introduction -- B-2 Noise Generation in Oscillators -- B-3 Bias‐Dependent Noise Model -- B-3-1 Bias‐Dependent Model -- B-3-2 Derivation of the Model -- B-4 General Concept of Noisy Circuits -- B-4-1 Noise from Linear Elements -- B-5 Noise Figure of Mixer Circuits -- B-6 Oscillator Noise Analysis -- B-7 Limitations of the Frequency‐Conversion Approach -- B-7-1 Assumptions -- B-7-2 Conversion and Modulation Noise -- B-7-3 Properties of Modulation Noise -- B-7-4 Noise Analysis of Autonomous Circuits -- B-7-5 Conversion Noise Analysis Results -- B-7-6 Modulation Noise Analysis Results.
B-8 Summary of the Phase Noise Spectrum of the Oscillator -- B-9 Verification Examples for the Calculation of Phase Noise in Oscillators Using Nonlinear Techniques -- B-9-1 Example 1: High‐Q Case Microstrip DRO -- B-9-2 Example 2: 10 MHz Crystal Oscillator -- B-9-3 Example 3: The 1‐GHz Ceramic Resonator VCO -- B-9-4 Example 4: Low Phase Noise FET Oscillator -- B-9-5 Example 5: Millimeter‐Wave Applications -- B-9-6 Example 6: Discriminator Stabilized DRO -- B-10 Summary -- B-10 References -- Chapter C EXAMPLE OF WIRELESS SYNTHESIZERS USING COMMERCIAL ICs -- Chapter D MMIC‐BASED SYNTHESIZERS -- D-1 INTRODUCTION -- BIBLIOGRAPHY -- Chapter E ARTICLES ON DESIGN OF DIELECTRIC RESONATOR OSCILLATORS -- E-1 THE DESIGN OF AN ULTRA‐LOW PHASE NOISE DRO -- E-1-1 Basic Considerations and Component Selection -- E-1-2 Component Selection -- E-1-3 DRO Topologies -- E-1-4 Small Signal Design Approach for the Parallel Feedback Type DRO -- E-1-5 Simulated Versus Measured Results -- E-1-6 Physical Embodiment -- E-1-7 Acknowledgments -- E-1-8 Final Remarks -- REFERENCES -- BIBLIOGRAPHY -- E-2 A NOVEL OSCILLATOR DESIGN WITH METAMATERIAL‐MÖBIUS COUPLING TO A DIELECTRIC RESONATOR -- E-2-1 Abstract -- E-2-2 Introduction -- REFERENCES -- Chapter F OPTO‐ELECTRONICALLY STABILIZED RF OSCILLATORS -- F-1 INTRODUCTION -- F-1-1 Oscillator Basics -- F-1-2 Resonator Technologies -- F-1-3 Motivation for OEO -- F-1-4 Operation Principle of the OEO -- F-2 EXPERIMENTAL EVALUATION AND THERMAL STABILITY OF OEO -- F-2-1 Experimental Setup -- F-2-2 Phase Noise Measurements -- F-2-3 Thermal Sensitivity Analysis of Standard Fibers -- F-2-4 Temperature Sensitivity Measurements -- F-2-5 Temperature Sensitivity Improvement with HC‐PCF -- F-2-6 Improve Thermal Stability Versus Phase Noise Degradation -- F-2-7 Passive Temperature Compensation -- F-2-8 Improving Effective Q with Raman Amplification.
F-3 FORCED OSCILLATION TECHNIQUES OF OEO.
Sommario/riassunto: "This new edition provides a comprehensive review of the original text with the addition of updated text and illustrations. The book is divided into six chapters beginning with Chapter 1 on loop fundamentals, which provides detailed insight into settling time and other characteristics of the loop. Chapter 2 outlines noise and spurious responses of the loops. The linear approach of oscillator phase noise is very detailed and walks the reader through all the important steps and contributions, both inside and outside the loop. In Chapter 3 the authors look at special loops. Here, the DDS technique--explained in detail--should prove most interesting to the reader. Chapter 4 provides a detailed overview of loop components. Chapter 5 provides in-depth details about multiloop synthesizers and Chapter 6 is dedicated to practical synthesizer examples, which combine the techniques outlined in previous chapters"--
Titolo autorizzato: Microwave and wireless synthesizers  Visualizza cluster
ISBN: 1-5231-4359-2
1-119-66611-2
1-119-66609-0
1-119-66612-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830471603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui