Vai al contenuto principale della pagina

Chemical reactivity in confined systems : theory, modelling and applications / / edited by Pratim K. Chattaraj, Debdutta Chakraborty



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Chemical reactivity in confined systems : theory, modelling and applications / / edited by Pratim K. Chattaraj, Debdutta Chakraborty Visualizza cluster
Pubblicazione: ℗♭2021
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica: 1 online resource (451 pages)
Disciplina: 541.39
Soggetto topico: Reactivity (Chemistry)
Persona (resp. second.): ChattarajPratim Kumar
ChakrabortyDebdutta
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Preface -- List of Contributors -- Chapter 1 Effect of Confinement on the Translation‐Rotation Motion of Molecules: The Inelastic Neutron Scattering Selection Rule -- 1.1 Introduction -- 1.2 Diatomics in C60: Entanglement, TR Coupling, Symmetry, Basis Representation, and Energy Level Structure -- 1.2.1 Entanglement Induced Selection Rules -- 1.2.2 H@C60 -- 1.2.3 H2@C60 -- 1.2.3.1 Symmetry -- 1.2.3.2 Spherical Basis and Eigenstates -- 1.2.3.3 Energy Level Ordering with Respect to λ -- 1.2.4 HX@C60 -- 1.3 INS Selection Rule for Spherical (Kh) Symmetry -- 1.3.1 Inelastic Neutron Scattering -- 1.3.2 Group Theory Derivation of the INS Selection Rule -- 1.3.2.1 Group‐Theory‐Based INS Selection Rule for Cylindrical (C∞v) Environments -- 1.3.2.2 Group‐Theory‐Based INS Selection Rule for Spherical (Kh) Environments -- 1.3.3 Specific Systems, Quantum Numbers, and Basis Sets -- 1.3.3.1 H@sphere -- 1.3.3.2 H2@sphere -- 1.3.3.3 HX@sphere -- 1.3.4 Beyond Diatomic Molecules -- 1.3.4.1 H2O@sphere -- 1.3.4.2 CH4@sphere -- 1.3.4.3 Any Guest Molecule in any Spherical (Kh) Environment -- 1.4 INS Selection Rules for Non‐Spherical Structures -- 1.5 Summary and Conclusions -- Acknowledgments -- References -- Chapter 2 Pressure‐Induced Phase Transitions -- 2.1 Pressure, A Property of All Flavours, and Its Importance for the Universe and Life -- 2.2 Pressure: Isotropic and Anisotropic, Positive and Negative -- 2.3 Changes of the State of Matter -- 2.4 Compression of Solids -- 2.4.1 Isotropic or Anisotropic Compressibility -- 2.4.2 Negative Linear Compressibility -- 2.4.3 Negative Area Compressibility -- 2.4.4 Anomalous Compressibility Changes at High Pressure -- 2.5 Structural Solid‐Solid Transitions -- 2.5.1 Structural Phase Transitions Accompanied by Volume Collapse -- 2.5.2 Effects of Volume Collapse on Free Energy.
2.5.3 Structure‐Influencing Factors at Compression -- 2.5.4 Changes in the Nature of Chemical Bonding upon Compression and upon Phase Transitions -- 2.6 Selected Classes of Magnetic and Electronic Transitions -- 2.6.1 High Spin-Low Spin Transitions -- 2.6.2 Electronic Com‐ vs Disproportionation -- 2.6.3 Metal‐to‐Metal Charge Transfer -- 2.6.4 Neutral‐to‐Ionic Transitions -- 2.6.5 Metallization of Insulators (and Resisting It) -- 2.6.6 Turning Metals into Insulators -- 2.6.7 Superconductivity of Elements and Compounds -- 2.6.8 Topological Phase Transitions -- 2.7 Modelling and Predicting HP Phase Transitions -- Acknowledgements -- References -- Chapter 3 Conceptual DFT and Confinement -- 3.1 Introduction and Reading Guide -- 3.2 Conceptual DFT -- 3.3 Confinement and Conceptual DFT -- 3.3.1 Atoms: Global Descriptors -- 3.3.2 Molecules: Global and Local Descriptors -- 3.3.2.1 Electron Affinities -- 3.3.2.2 Hardness and Electronic Fukui Function -- 3.3.3 Inclusion of Pressure in the E & -- equals -- E [N,v] Functional -- 3.4 Conclusions -- Acknowledgements -- References -- Chapter 4 Electronic Structure of Systems Confined by Several Spatial Restrictions -- 4.1 Introduction -- 4.2 Confinement Imposed by Impenetrable Walls -- 4.3 Confinement Imposed by Soft Walls -- 4.4 Beyond Confinement Models -- 4.5 Conclusions -- References -- Chapter 5 Unveiling the Mysterious Mechanisms of Chemical Reactions -- 5.1 Introduction -- 5.1.1 Context -- 5.1.2 Ideas and Methods -- 5.1.3 Application -- 5.2 Energy and Reaction Force -- 5.2.1 The Reaction Force Analysis (RFA) -- 5.2.2 RFA‐Based Energy Decomposition -- 5.2.3 Marcus Potential Energy Function -- 5.2.4 Marcus RFA -- 5.3 Electronic Activity Along a Reaction Coordinate -- 5.3.1 Chemical Potential, Hardness, and Electrophilicity Index -- 5.3.2 The Reaction Electronic Flux (REF).
5.3.2.1 Physical Decomposition of REF -- 5.3.2.2 Chemical Decomposition of REF -- 5.4 An Application: the Formation of Aminoacetonitrile -- 5.4.1 Energetic Analysis -- 5.4.2 Reaction Mechanisms -- 5.5 Conclusions -- Acknowledgments -- References -- Chapter 6 A Perspective on the So‐Called Dual Descriptor -- 6.1 Introduction: Conceptual DFT -- 6.2 The Dual Descriptor: Fundamental Aspects -- 6.2.1 Initial Formulation -- 6.2.2 Alternative Formulations -- 6.2.2.1 Derivative Formulations -- 6.2.2.2 Link with Frontier Molecular Orbital Theory -- 6.2.2.3 State‐Specific Development -- 6.2.2.4 MO Degeneracy -- 6.2.2.5 Quasi Degeneracy -- 6.2.2.6 Spin Polarization -- 6.2.2.7 Grand Canonical Ensemble Derivation -- 6.2.3 Real‐Space Partitioning -- 6.2.4 Dual Descriptor and Chemical Principles -- 6.2.4.1 Principle of Maximum Hardness -- 6.2.4.2 Local Hardness Descriptors -- 6.2.4.3 Local Electrophilicity and Nucleophilicity -- 6.2.4.4 Local Chemical Potential and Excited States Reactivity -- 6.3 Illustrations -- 6.3.1 Woodward Hoffmann Rules in Diels‐Alder Reactions -- 6.3.2 Perturbational MO Theory and Dual Descriptor -- 6.3.3 Markovnikov Rule -- 6.4 Conclusions -- References -- Chapter 7 Molecular Electrostatic Potentials: Significance and Applications -- 7.1 A Quick Review of Some Classical Physics -- 7.2 Molecular Electrostatic Potentials -- 7.3 The Electronic Density and the Electrostatic Potential -- 7.4 Characterization of Molecular Electrostatic Potentials -- 7.5 Molecular Reactivity -- 7.6 Some Applications of Electrostatic Potentials to Molecular Reactivity -- 7.6.1 σ‐Hole and π‐Hole Interactions -- 7.6.2 Hydrogen Bonding: A σ‐Hole Interaction -- 7.6.3 Interaction Energies -- 7.6.4 Close Contacts and Interaction Sites -- 7.6.5 Biological Recognition Interactions -- 7.6.6 Statistical Properties of Molecular Surface Electrostatic Potentials.
7.7 Electrostatic Potentials at Nuclei -- 7.8 Discussion and Summary -- References -- Chapter 8 Chemical Reactivity Within the Spin‐Polarized Framework of Density Functional Theory -- 8.1 Introduction -- 8.2 The Spin‐Polarized Density Functional Theory as a Suitable Framework to Describe Both Charge and Spin Transfer Processes -- 8.3 Practical Applications of SP‐DFT Indicators -- 8.4 Concluding Remarks and Perspectives -- Acknowledgements -- References -- Chapter 9 Chemical Binding and Reactivity Parameters: A Unified Coarse Grained Density Functional View -- 9.1 Introduction -- 9.2 Theory -- 9.2.1 Concept of Electronegativity, Chemical Hardness, and Chemical Binding -- 9.2.1.1 Electronegativity and Hardness -- 9.2.1.2 Interatomic Charge Transfer in Molecular Systems -- 9.2.1.3 Concept of Chemical Potential and Hardness for the Bond Region -- 9.2.1.4 Spin‐Polarized Generalization of Chemical Potential and Hardness -- 9.2.1.5 Charge Equilibriation Methods: Split Charge Models and Models with Correct Dissociation Limits -- 9.2.1.6 Density Functional Perturbation Approach: A Coarse Graining Procedure -- 9.2.1.7 Atomic Charge Dipole Model for Interatomic Perturbation and Response Properties -- 9.2.1.8 Force Field Generation in Molecular Dynamics Simulation -- 9.3 Perspective on Model Building for Chemical Binding and Reactivity -- 9.4 Concluding Remarks -- Acknowledgements -- References -- Chapter 10 Softness Kernel and Nonlinear Electronic Responses -- 10.1 Introduction -- 10.2 Linear and Nonlinear Electronic Responses -- 10.2.1 Linear Response Theory -- 10.2.1.1 Ground‐State -- 10.2.1.2 Linear Responses -- 10.2.2 Nonlinear Responses and the Softness Kernel -- 10.2.3 Eigenmodes of Reactivity -- 10.3 One‐Dimensional Confined Quantum Gas: Analytical Results from a Model Functional -- 10.4 Conclusion -- References.
Chapter 11 Conceptual Density Functional Theory in the Grand Canonical Ensemble -- 11.1 Introduction -- 11.2 Fundamental Equations for Chemical Reactivity -- 11.3 Temperature‐Dependent Response Functions -- 11.4 Local Counterpart of a Global Descriptor and Non‐Local Counterpart of a Local Descriptor -- 11.5 Concluding Remarks -- Acknowledgements -- References -- Chapter 12 Effect of Confinement on the Optical Response Properties of Molecules -- 12.1 Introduction -- 12.2 Electronic Contributions to Longitudinal Electric‐Dipole Properties of Atomic and Molecular Systems Embedded in Harmonic Oscillator Potential -- 12.3 Vibrational Contributions to Longitudinal Electric‐Dipole Properties of Spatially Confined Molecular Systems -- 12.4 Two‐Photon Absorption in Spatial Confinement -- 12.5 Conclusions -- References -- Chapter 13 A Density Functional Theory Study of Confined Noble Gas Dimers in Fullerene Molecules -- 13.1 Introduction -- 13.2 Computational Details -- 13.3 Results and Discussion -- 13.3.1 Changes in Structure -- 13.3.2 Changes in Interaction Energy -- 13.3.3 Changes in Bonding Energy -- 13.3.4 Changes in Energy Components -- 13.3.5 Changes in Noncovalent Interactions -- 13.3.6 Changes in Information‐Theoretic Quantities -- 13.3.7 Changes in Spectroscopy -- 13.3.8 Changes in Reactivity -- 13.4 Conclusions -- Acknowledgments -- References -- Chapter 14 Confinement Induced Chemical Bonding: Case of Noble Gases -- 14.1 Introduction -- 14.2 Computational Details and Theoretical Background -- 14.3 The Bonding in He@C10H16: A Debate -- 14.4 Confinement Inducing Chemical Bond Between Two Ngs -- 14.5 XNgY Insertion Molecule: Confinement in One Direction -- 14.6 Conclusions -- Acknowledgements -- References -- Chapter 15 Effect of Both Structural and Electronic Confinements on Interaction, Chemical Reactivity and Properties -- 15.1 Introduction.
15.2 Geometrical Changes in Small Molecules Under Spherical and Cylindrical Confinement.
Sommario/riassunto: "This book provides a theoretical basis for the molecular phenomena observed in confined spaces. State-of the-art theoretical and computational approaches are described, with a focus on obtaining physically relevant understanding, enabling the reader to build a good appreciation of the underlying chemical principles. a̲²́ƠË₋Real life' examples of confined systems are presented, highlighting how the reactivity of atoms and molecules changes upon encapsulation. Recent developments related to the following host-guest systems are discussed. *A̲ Cucurbit[n]uril *A̲ ExBox 4 *A̲ Clathrate hydrates *A̲ Octa acid cavitand *A̲ Metal organic frameworks (MOFs) *A̲ Covalent organic frameworks (COFs) *A̲ Zeolites *A̲ Fullerenes *A̲ Carbon nanotubes."--
Titolo autorizzato: Chemical reactivity in confined systems  Visualizza cluster
ISBN: 1-119-68338-6
1-119-68335-1
1-119-68323-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830133103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui