Vai al contenuto principale della pagina

Algebraic Q-groups as abstract groups / / Olivier Frécon



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Frécon Olivier <1974-> Visualizza persona
Titolo: Algebraic Q-groups as abstract groups / / Olivier Frécon Visualizza cluster
Pubblicazione: Providence, Rhode Island : , : American Mathematical Society, , [2018]
©2018
Descrizione fisica: 1 online resource (v, 99 pages)
Disciplina: 512.9
Soggetto topico: Algebra
Finite groups
Isomorphisms (Mathematics)
Note generali: "September 2018 . Volume 255 . Number 1219 (second of 7 numbers)."
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title page -- Chapter 1. Introduction -- 1.1. Related work -- 1.2. The field of definition -- 1.3. Overview of the paper -- Chapter 2. Background material -- 2.1. Groups of finite Morley rank -- 2.2. Fundamental theorems -- 2.3. Decent tori and pseudo-tori -- 2.4. Unipotence -- Chapter 3. Expanded pure groups -- Chapter 4. Unipotent groups over \ov{\Q} and definable linearity -- Chapter 5. Definably affine groups -- 5.1. Definition and generalities -- 5.2. The subgroup ( ) -- 5.3. The subgroup ( ) -- Chapter 6. Tori in expanded pure groups -- Chapter 7. The definably linear quotients of an -group -- 7.1. The subgroups ( ) and ( ) -- 7.2. The nilpotence of ( ) -- 7.3. The subgroup ( ) when the ground field is \ov{\Q} -- 7.4. The subgroups ( ) and ( ) in positive characteristic -- Chapter 8. The group _{ } and the Main Theorem for =\ov{\Q} -- Chapter 9. The Main Theorem for ≠\ov{\Q} -- Chapter 10. Bi-interpretability and standard isomorphisms -- 10.1. Positive characteristic and bi-interpretability -- 10.2. Characteristic zero -- Acknowledgements -- Bibliography -- Index of notations -- Index -- Back Cover.
Sommario/riassunto: The author analyzes the abstract structure of algebraic groups over an algebraically closed field K. For K of characteristic zero and G a given connected affine algebraic \overline{\mathbb Q}-group, the main theorem describes all the affine algebraic \overline{\mathbb Q} -groups H such that the groups H(K) and G(K) are isomorphic as abstract groups. In the same time, it is shown that for any two connected algebraic \overline{\mathbb Q} -groups G and H, the elementary equivalence of the pure groups G(K) and H(K) implies that they are abstractly isomorphic. In the final section, the author applies his results to characterize the connected algebraic groups, all of whose abstract automorphisms are standard, when K is either \overline {\mathbb Q} or of positive characteristic. In characteristic zero, a fairly general criterion is exhibited.
Titolo autorizzato: Algebraic Q-groups as abstract groups  Visualizza cluster
ISBN: 1-4704-4815-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910828441303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Memoirs of the American Mathematical Society ; ; Number 1219.