Vai al contenuto principale della pagina
| Autore: |
Street Brian
|
| Titolo: |
Multi-parameter singular integrals / / Brian Street
|
| Pubblicazione: | Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2014 |
| ©2014 | |
| Edizione: | Course Book |
| Descrizione fisica: | 1 online resource (412 p.) |
| Disciplina: | 515/.98 |
| Soggetto topico: | Singular integrals |
| Transformations (Mathematics) | |
| Soggetto non controllato: | CaldernКygmund singular integrals |
| CaldernКygmund | |
| CarnotЃarathodory balls | |
| CarnotЃarathodory geometry | |
| CarnotЃarathodory metric | |
| Euclidean singular integral operators | |
| Frobenius theorem | |
| Frobenius | |
| LittlewoodАaley theory | |
| Schwartz space | |
| Sobolev spaces | |
| convolution | |
| elliptic partial differential equations | |
| elliptic partial differential operators | |
| flag kernels | |
| invariant operators | |
| linear partial differential equation | |
| non-homogeneous kernels | |
| pseudodifferential operators | |
| singular integral operator | |
| singular integral operators | |
| singular integrals | |
| strengthened cancellation | |
| Classificazione: | SI 830 |
| Note generali: | Description based upon print version of record. |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Front matter -- Contents -- Preface -- 1. The Calderón-Zygmund Theory I: Ellipticity -- 2. The Calderón-Zygmund Theory II: Maximal Hypoellipticity -- 3. Multi-parameter Carnot-Carathéodory Geometry -- 4. Multi-parameter Singular Integrals I: Examples -- 5. Multi-parameter Singular Integrals II: General Theory -- Appendix A. Functional Analysis -- Appendix B. Three Results from Calculus -- Appendix C. Notation -- Bibliography -- Index |
| Sommario/riassunto: | This book develops a new theory of multi-parameter singular integrals associated with Carnot-Carathéodory balls. Brian Street first details the classical theory of Calderón-Zygmund singular integrals and applications to linear partial differential equations. He then outlines the theory of multi-parameter Carnot-Carathéodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. Street then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. This is one of the first general theories of multi-parameter singular integrals that goes beyond the product theory of singular integrals and their analogs. Multi-parameter Singular Integrals will interest graduate students and researchers working in singular integrals and related fields. |
| Titolo autorizzato: | Multi-parameter singular integrals ![]() |
| ISBN: | 1-4008-5275-7 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910818432203321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |