Vai al contenuto principale della pagina

Introduction to numerical electrostatics using MATLAB / / Lawrence N. Dworsky



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Dworsky Lawrence N. <1943-> Visualizza persona
Titolo: Introduction to numerical electrostatics using MATLAB / / Lawrence N. Dworsky Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : Wiley, , [2014]
©2014
Descrizione fisica: 1 online resource (454 p.)
Disciplina: 537/.20151
Soggetto topico: Electromagnetisme - Informàtica
Electroestàtica - Informàtica
Electromagnetism - Data processing
Electrostatics - Data processing
Classificazione: SCI022000
Note generali: Includes index.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Introduction to Numerical Electrostatics Using MATLAB®; Copyright; Contents; Preface; Introduction; Acknowledgments; 1 A Review of Basic Electrostatics; 1.1 Charge, Force, and the Electric Field; 1.2 Electric Flux Density and Gauss's Law; 1.3 Conductors; 1.4 Potential, Gradient, and Capacitance; 1.5 Energy in the Electric Field; 1.6 Poisson's and Laplace's Equations; 1.7 Dielectric Interfaces; 1.8 Electric Dipoles; 1.9 The Case for Approximate Numerical Analysis; Problems; 2 The Uses of Electrostatics; 2.1 Basic Circuit Theory; 2.2 Radio Frequency Transmission Lines
2.3 Vacuum Tubes and Cathode Ray Tubes 2.4 Field Emission and the Scanning Electron Microscope; 2.5 Electrostatic Force Devices; 2.6 Gas Discharges and Lighting Devices; 3 Introduction to the Method of Moments Technique for Electrostatics; 3.1 Fundamental Equations; 3.2 A Working Equation Set; 3.3 The Single-Point Approximation for Off-Diagonal Terms; 3.4 Exact Solutions for the Diagonal Term and In-Plane Terms; 3.5 Approximating Li,j; Problems; 4 Examples using the Method of Moments; 4.1 A First Modeling Program; 4.2 Input Data File Preparation for the First Modeling Program
4.3 Processing the Input Data 4.4 Generating the Li,j Array; 4.5 Solving the System and Examining Some Results; 4.6 Limits of Resolution; 4.7 Voltages and Fields; 4.8 Varying the Geometry; Problems; 5 Symmetries, Images and Dielectrics; 5.1 Symmetries; 5.2 Images; 5.3 Multiple Images and the Symmetric Stripline; 5.4 Dielectric Interfaces; 5.5 Two-Dimensional Cross Sections of UniformThree-Dimensional Structures; 5.6 Charge Profiles and Current Bunching; 5.7 Cylinder between Two Planes; Problems; 6 Triangles; 6.1 Introduction to Triangular Cells; 6.2 Right Triangles
6.3 Calculating Li,i (Self ) Coefficients 6.4 Calculating Li,j for ij; 6.5 Basic Meshing and Data Formats for Triangular Cell MoM Programs; 6.6 Using MATLAB to Generate Triangular Meshings; 6.7 Calculating Voltages; 6.8 Calculating the Electric Field; 6.9 Three-Dimensional Structures; 6.10 Charge Profiles; Problems; 7 Summary and Overview; 7.1 Where We Were, Where We're Going; 8 The Finite Difference Method; 8.1 Introduction and a Simple Example; 8.2 Setting Up and Solving a Basic Problem; 8.3 The Gauss-Seidel (Relaxation) Solution Technique; 8.4 Charge, Gauss's Law, and Resolution
8.5 Voltages and Fields 8.6 Stored Energy and Capacitance; Problems; 9 Refining the Finite Difference Method; 9.1 Refined Grids; 9.2 Arbitrary Conductor Shapes; 9.3 Mixed Dielectric Regions and a New Derivation of the Finite Difference Equation; 9.4 Example: Structure with a Dielectric Interface; 9.5 Axisymmetric Cylindrical Coordinates; 9.6 Symmetry Boundary Condition; 9.7 Duality, and Upper and Lower Bounds to Solutions for Transmission Lines; 9.8 Extrapolation; 9.9 Three-Dimensional Grids; Problems; 10 Multielectrode Systems; 10.1 Multielectrode Structures; 10.2 Utilizing Superposition
10.3 Utilizing Symmetry
Sommario/riassunto: "The first of its kind uniquely devoted to the field of computational electrostatics, this book dives headfirst into the actual problems that engineers are expected to solve using method of moment (MoM), finite difference, and finite element techniques. Readers are guided step by step through specific problems and challenges, covering all aspects of electrostatics with an emphasis on numerical procedures. Focusing on practical examples, mathematical equations, and common issues with algorithms, this is an ideal text for students in engineering, physics, and electrostatics--and working engineers and physicists"--
"Introduction to Numerical Electrostatics contains problem sets, an accompanying web site with simulations, and a complete list of computer codes"--
Titolo autorizzato: Introduction to numerical electrostatics using MATLAB  Visualizza cluster
ISBN: 1-118-75608-8
1-118-75600-2
1-118-75571-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910818371103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilitĂ  qui