Vai al contenuto principale della pagina

Kernel Density Estimation Based on Grouped Data : : The Case of Poverty Assessment / / Camelia Minoiu, Sanjay Reddy



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Minoiu Camelia Visualizza persona
Titolo: Kernel Density Estimation Based on Grouped Data : : The Case of Poverty Assessment / / Camelia Minoiu, Sanjay Reddy Visualizza cluster
Pubblicazione: Washington, D.C. : , : International Monetary Fund, , 2008
Edizione: 1st ed.
Descrizione fisica: 1 online resource (36 p.)
Disciplina: 339.46
Soggetto topico: Poverty - Measurement
Income distribution - Econometric models
Kernel functions
Aggregate Factor Income Distribution
Demographic Economics: General
Demography
Econometric models
Econometrics & economic statistics
Econometrics
Estimation techniques
Estimation
Income distribution
Income
Macroeconomics
Personal income
Personal Income, Wealth, and Their Distributions
Population & demography
Population and demographics
Population
Poverty & precarity
Poverty and Homelessness
Poverty
Welfare, Well-Being, and Poverty: General
Soggetto geografico: Nicaragua
Altri autori: ReddySanjay  
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Contents; I. Motivation; II. The Data Structure and the Bias of the Estimator; III. The Bandwidth and Kernels Considered; IV. Monte Carlo Study; A. Theoretical Distributions; B. Summary Statistics, Density Estimates and Diagrams; C. Poverty Estimates; V. Country Studies; VI. Global Poverty; VII. Conclusions; References; Appendix; Appendix Figures; 1. Distributions used in Monte Carlo analysis; 2. Bias of KDE-based density (log-normal distribution); Appendix Tables; 1. Summary statistics from KDE-based sample; 3. Bias of estimated density (multimodal distribution)
4. Bias of estimated density (Dagum distribution)2. Bias of poverty measures (Low and High Poverty Lines); 5. Bias in the poverty headcount ratio versus location of poverty line; 3. Bias of poverty measures (Triweight kernel, Poverty line: 0.25 x median); 4. Bias of poverty measures (Hybrid bandwidth, Poverty line: 0.5 x median); 5. Bias of poverty measures (Epanechnikov kernel, Silverman bandwidth); 6. Bias of poverty measures (Gaussian kernel, Poverty line: Capability); 6. Survey-based and grouped data KDE-based density estimates; 7. Global poverty rates (% poor)
8. Global poverty counts (millions)
Sommario/riassunto: We analyze the performance of kernel density methods applied to grouped data to estimate poverty (as applied in Sala-i-Martin, 2006, QJE). Using Monte Carlo simulations and household surveys, we find that the technique gives rise to biases in poverty estimates, the sign and magnitude of which vary with the bandwidth, the kernel, the number of datapoints, and across poverty lines. Depending on the chosen bandwidth, the $1/day poverty rate in 2000 varies by a factor of 1.8, while the $2/day headcount in 2000 varies by 287 million people. Our findings challenge the validity and robustness of poverty estimates derived through kernel density estimation on grouped data.
Titolo autorizzato: Kernel Density Estimation Based on Grouped Data  Visualizza cluster
ISBN: 1-4623-9111-7
1-4527-8641-0
1-4518-7041-8
1-282-84134-3
9786612841347
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910817530303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: IMF Working Papers; Working Paper ; ; No. 2008/183