Vai al contenuto principale della pagina

Axiomatic set theory / / James E. Baumgartner, Donald A. Martin, and Saharon Shelah, editors



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Axiomatic set theory / / James E. Baumgartner, Donald A. Martin, and Saharon Shelah, editors Visualizza cluster
Pubblicazione: Providence, Rhode Island : , : American Mathematical Society, , [1984]
©1984
Descrizione fisica: 1 online resource (271 p.)
Disciplina: 511.3/22
Soggetto topico: Axiomatic set theory
Persona (resp. second.): BaumgartnerJames E. <1943-2011, >
MartinD. A <1940-> (Donald A.)
ShelahSaharon
Note generali: "Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference in the Mathematical Sciences on Axiomatic Set Theory, held at the University of Colorado, Boulder, June 19-25, 1983"--Title page verso.
Nota di bibliografia: Includes bibliographies.
Nota di contenuto: Table of Contents -- Preface -- Russell's earliest reactions to Cantorian set theory, 1896-1900 -- Sets of ordinals constructible from trees and the third Victoria Delfino problem -- Existence of bases implies the axiom of choice -- Small extensions of models of set theory -- The pin-up conjecture -- Generic reals close to o# -- Families of almost disjoint functions -- Homomorphism axioms and lynxes -- Infinitary logic and o# -- An extravagant partition relation for a model of arithmetic -- Stationary subsets of inaccessible cardinals -- Rational perfect set forcing -- Indiscernibles, skies, and ideals -- On cardinal invariants of the continuum -- A note on the proper forcing axiom -- Souslin trees constructed from Morasses -- PKI > combinatorics I: Stationary coding sets rationalize the club filter.
Titolo autorizzato: Axiomatic set theory  Visualizza cluster
ISBN: 0-8218-7616-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910812565003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Contemporary mathematics (American Mathematical Society). ; 31 . 0271-4132