Vai al contenuto principale della pagina
Titolo: | Sustainable agriculture reviews 53 : nanoparticles: a new tool to enhance stress tolerance / / edited by Mohammad Faizan, Shamsul Hayat, Fangyuan Yu |
Pubblicazione: | Cham, Switzerland : , : Springer, , [2021] |
©2021 | |
Descrizione fisica: | 1 online resource (426 pages) |
Disciplina: | 338.16 |
Soggetto topico: | Nanobiotechnology |
Agricultura sostenible | |
Soggetto genere / forma: | Llibres electrònics |
Persona (resp. second.): | FaizanMohammad |
HayatShamsul | |
YuFangyuan | |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Intro -- Preface -- Contents -- About the Editors -- Contributors -- Chapter 1: Role of Quantum Dots, Polymeric NPs and Dendrimers in Emphasizing Crops Tolerate Biotic and Abiotic Stresses -- 1.1 Introduction -- 1.1.1 Background -- 1.1.2 Definition -- 1.2 Properties of Quantum Dots (QDs) -- 1.2.1 Optical Characteristics of Quantum Dots (QDs) -- 1.2.2 Effect of Core-Shell Materials on Quantum Dots (QDs) Bioactivity -- 1.2.3 Electrical Characteristics of Quantum Dots (QDs) -- 1.3 Synthesis and Characterization -- 1.3.1 Synthesis of Carbon Quantum Dots (CQDs) -- 1.3.2 Characterization -- 1.3.3 Cadmium Selenide Quantum Dots Synthesis and Characterization (CdSe QDs) -- 1.4 Application for Plant Stress Tolerance -- 1.4.1 A Biotic Stress -- 1.4.2 Biotic Stress -- 1.5 Toxicity -- 1.6 Conclusion and Prospects -- References -- Chapter 2: Climate Change Mitigation and Nanotechnology: An Overview -- 2.1 Introduction -- 2.1.1 What Is the Definition of Nano-Technology? -- 2.2 Application of Nanotechnology in Major Abiotic Stresses -- 2.2.1 Nanoparticles Impact on Abiotic Stresses in the Plants -- 2.3 Potential Role of Nanotechnology to Confer Biotic Stress Tolerance in the Plants -- 2.3.1 Uptake, Synthesis and Characterization of Nanoparticles -- 2.4 Role of Nanotechnology in Mitigating Biotic Stress -- 2.4.1 Concept of Green Nanotechnology in Biotic stress Management -- 2.4.2 Mechanism of Action of Nanoparticles under Biotic Stress -- 2.5 Toxicity of Nanoparticles -- 2.6 Conclusion -- References -- Chapter 3: Nanoparticles As a New Promising Tool to Increase Plant Immunity Against Abiotic Stress -- 3.1 Introduction -- 3.2 Synthesis, Types and Properties of Nanoparticles -- 3.3 Nanoparticle Uptake, Mobilization, and Accumulation in Plants -- 3.4 Nanoparticles' Effects on Plants -- 3.4.1 Effect of Nanoparticles on Growth and Bio-Productivity. |
3.4.2 Effect of Nanoparticles on Photosynthesis and Plant Water Relations -- 3.4.3 Effect of Nanoparticles on Plant Antioxidant Machinery -- 3.4.4 Effect of Nanoparticles on Phytohormones -- 3.5 Nanoparticles Increase Plant Immunity to Abiotic Stress -- 3.5.1 The Effect of Nanoparticles on Salt-Stressed Plants -- 3.5.2 The Effect of Nanoparticles on Drought-Stressed Plants -- 3.5.3 The Effect of Nanoparticles on Heat-Stressed Plants -- 3.5.4 The Effect of Nanoparticles on Plants Exposed to Heavy Metal Stress -- 3.6 Nanoparticles as Genome Editors -- 3.7 Are Nanoparticles Safe? -- 3.7.1 Nanoparticle's Toxicity -- 3.7.2 What Makes Some Nanoparticles More Toxic Than Others? -- 3.7.3 Nanoparticles' Toxicity in Plants -- 3.7.3.1 Nanoparticles Can Be Stress Elicitors As Well As Stress Mitigators -- 3.7.3.2 Nanoparticles and Genotoxicity in Plants -- 3.7.4 Risks of Nanoparticles on Humans, Soil, and Environment -- 3.8 Conclusions and Future Perspectives -- References -- Chapter 4: Exploring Nanotechnology to Reduce Stress: Mechanism of Nanomaterial-Mediated Alleviation -- 4.1 Introduction -- 4.1.1 Cascade of Signaling Behind Plant-NPs Interaction and Stress Tolerance -- 4.2 Nanoparticles and Abiotic Stress Resistance -- 4.2.1 Salinity Stress -- 4.2.2 Drought Stress -- 4.2.3 Temperature Stress -- 4.2.3.1 Heat Stress -- 4.2.3.2 Cold Stress -- 4.2.4 Heavy Metals Stress -- 4.3 Conclusion and Future Perspectives -- References -- Chapter 5: Alleviation Mechanism of Drought Stress in Plants Using Metal Nanoparticles - A Perspective Analysis -- 5.1 Introduction -- 5.2 Drought as Limiting Factor for Crop Production -- 5.3 Nanotechnology as Drought Resistant Technique -- 5.3.1 Mechanism Involved -- 5.3.2 Role of Nanoparticles -- 5.4 Plant Adaptations to Drought Stress -- 5.4.1 Role of Phenotypic Flexibility to Cope Drought and Related Role of Nanoparticles. | |
5.4.2 Physiological Mechanisms -- 5.4.3 Role of Cell Membrane Stability -- 5.4.4 Molecular Mechanisms -- 5.5 Metal nanoparticles and Drought Resistance -- 5.5.1 Titanium Dioxide (TiO2) Nanoparticles -- 5.5.2 Iron Oxide (FeO) Nanoparticles -- 5.5.3 Zinc Oxide (ZnO) Nanoparticles -- 5.5.4 Silicon Oxide (SiO2) Nanoparticles -- 5.5.5 Selenium Oxide (SeO3) Nanoparticles -- 5.5.6 Aluminium Oxide (Al2O3) Nanoparticles -- 5.5.7 Copper Oxide (CuO) Nanoparticles -- 5.6 Methods of applications of nanoparticles for Drought Resistance -- 5.6.1 Nanoparticles Pretreatment of Seeds or Seed Priming -- 5.6.2 Nanoparticles as Foliar Spray -- 5.6.3 Soil application of Nanoparticles -- 5.7 Conclusion -- References -- Chapter 6: Role of Various Nanoparticles in Countering Heavy Metal, Salt, and Drought Stress in Plants -- 6.1 Introduction -- 6.2 Heavy Metal/Metalloid Stress -- 6.3 Salt Stress -- 6.4 Drought Stress -- 6.5 Conclusion -- References -- Chapter 7: Mode of Action and Signaling of Nanoparticles to Alleviate Abiotic Stress in Crop Plants -- 7.1 Introduction -- 7.2 Plant Response During Abiotic Stress -- 7.3 Abiotic Stresses and Mode of Nanoparticles Action -- 7.3.1 Salt Stress -- 7.3.2 Drought Stress -- 7.3.3 Heat Stress -- 7.3.4 Chilling Stress -- 7.3.5 Heavy metal Stress -- 7.4 Nanoparticles Signalling During Abiotic Stress -- 7.5 Conclusion -- References -- Chapter 8: Impact of Nanoparticles and Nanoparticle-Coated Biomolecules to Ameliorate Salinity Stress in Plants with Special Reference to Physiological, Biochemical and Molecular Mechanism of Action -- 8.1 Introduction -- 8.2 Importance of Nanoparticles and Nanoparticle-Coated Biomolecules in Plants -- 8.3 Nanoparticles: Types and Synthesis -- 8.4 Microorganisms for Nanoparticles Synthesis -- 8.5 Steps Involved in the Microorganisms-Mediated Synthesis of Nanoparticles. | |
8.6 Biosynthesis of Nanoparticles Using Plants -- 8.7 Application of Nanoparticles in Salt Stress Management -- 8.8 Role of Nano-Encapsulation in Mitigating Salinity Stress -- 8.9 Mechanism of Action of Nanoparticles to Ameliorate Salt Stress -- 8.10 Conclusion and Future Perspectives -- References -- Chapter 9: Effect of Carbon Nanotubes on Abiotic Stress Response in Plants: An Overview -- 9.1 Introduction -- 9.2 Physiological Impacts of Carbon Nanotubes on Plants -- 9.2.1 Effects of CNT on Seed Germination -- 9.2.2 Photosynthetic Rate Effects -- 9.3 Impact of Carbon Nanotubes on ROS and Antioxidant System of the Plants -- 9.3.1 Carbon Nanotubes and Drought Stress -- 9.3.2 Carbon Nanotubes and Salinity Stress -- 9.3.3 Carbon Nanotubes and Other Abiotic Stresses -- 9.4 Conclusion and Future Perspectives -- References -- Chapter 10: Responses of Crop Plants Under Nanoparticles Supply in Alleviating Biotic and Abiotic Stresses -- 10.1 Introduction -- 10.2 Modulation of Gene Expression by Nanoparticle Supply -- 10.3 Effect of Nanoparticles Under Biotic Stress Conditions -- 10.4 Alleviative Effect of Different Nanoparticles Under Abiotic Stress Conditions -- 10.5 Conclusion -- References -- Chapter 11: Nanotechnological Approaches for Efficient Delivery of Plant Ingredients -- 11.1 Introduction -- 11.1.1 Importance of Nanotechnology in Agriculture -- 11.1.2 Uptake and Translocation System -- 11.1.2.1 Plants' Nanoparticle Uptake Mechanisms -- 11.1.3 Barriers of Plant Delivery System -- 11.2 Nano-Based for Ingredients Delivery -- 11.2.1 Nutrients -- 11.2.2 Micronutrients -- 11.2.3 Immune promoters -- 11.2.4 Hormones -- 11.3 Silica-Based Nanosystem for Gene Delivery -- 11.3.1 Surface Modification of Mesoporous Silica Nano particulates for Gene Delivery -- 11.3.1.1 Amination alteration -- 11.3.1.2 Metal Cations -- 11.3.1.3 Cationic Polymers. | |
11.3.1.4 Magnetic Silica Nanosphere for Gene Delivery -- 11.3.2 Carbon Nanotubes for Gene Delivery -- 11.3.3 Carbon Nanotubes and Plant Biotechnology -- 11.3.4 Micro RNA Delivery in Crop Protection -- 11.4 Nano Based for Fertilizers Delivery -- 11.4.1 Nano fertilizer -- 11.4.2 Nano Fertiliser Formulations -- 11.4.2.1 Chemical-Based Nano Fertilizers Formulations -- 11.4.2.2 Biological Based Nano Biofertilizers Formulations -- 11.4.3 Nano Fertilizer Uptake, Translocation and Fate in Plants -- 11.4.4 Nano-Fertilizers for Abiotic and Biotic Stress Tolerance -- 11.4.5 Nanofertilizers Limitations -- 11.5 Nano-Based for Pesticides Delivery -- 11.5.1 Polymer-Based Encapsulation -- 11.5.1.1 Nanocapsules -- 11.5.1.2 Nanospheres -- 11.5.1.3 Micelles -- 11.5.1.4 Nanogels -- 11.5.2 Lipid NMS-based encapsulation -- 11.5.2.1 Nanoliposomes -- 11.5.2.2 Solid Lipid Nanoparticles (SLNs) -- 11.5.3 Clay NMS-based Encapsulation -- 11.5.3.1 Clay Nanomaterials -- 11.5.3.2 Layered Double Hydroxides (LDHs) -- 11.5.4 Others Encapsulation (Starch-etc) -- 11.6 Conclusion and Prospects -- References -- Chapter 12: Enhancement of Stress Tolerance of Crop Plants by ZnO Nanoparticles -- 12.1 Introduction -- 12.2 Effect of ZnO Nanoparticles' Properties on Biological Interaction in Soils and Colloids -- 12.3 Multiple Effects of Exposure Pathways -- 12.3.1 Seed Application -- 12.3.2 Soil Application -- 12.3.3 Foliar Application -- 12.3.4 Effect of Applied Nanoparticle Concentration and Soil Properties -- 12.4 Amelioration of Stress by ZnO NP -- 12.4.1 Biotic Stress -- 12.4.1.1 Herbivores -- 12.4.1.2 Pathogens -- 12.4.2 Abiotic Stress -- 12.4.2.1 Heavy Metals -- 12.4.2.2 Heat -- 12.4.2.3 Cold -- 12.4.2.4 Drought -- 12.4.2.5 Flooding -- 12.4.2.6 Salts -- 12.5 Conclusion and Future Outlook -- References. | |
Chapter 13: Effects of Nanoparticles on Alleviating Phytotoxicity of Soil Heavy Metals: Potential for Enhancing Phytoremediation. | |
Titolo autorizzato: | Sustainable agriculture reviews 53 |
ISBN: | 3-030-86876-1 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910767585103321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |