Vai al contenuto principale della pagina

Coherent optical wireless communication principle and application / / Xizheng Ke, Jiali Wu



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Ke Xizheng Visualizza persona
Titolo: Coherent optical wireless communication principle and application / / Xizheng Ke, Jiali Wu Visualizza cluster
Pubblicazione: Singapore : , : Springer, , [2023]
©2023
Descrizione fisica: 1 online resource (474 pages)
Disciplina: 621.3827
Soggetto topico: Free space optical interconnects
Optical communications
Wireless communication systems
Persona (resp. second.): WuJiali
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Intro -- Preface -- Introduction -- Contents -- 1 Optical Wirelss Coherent Detection: An Overview -- 1.1 Optical Wireless Coherent Communication -- 1.2 Optical Wireless Communication: Development Status -- 1.3 Research Status at Home and Abroad -- 1.3.1 Inter-Satellite Coherent Optical Detection -- 1.3.2 Coherent Optical Detection in Optical Fiber Communication -- 1.3.3 Free-Space Coherent Detection Communication System -- 1.4 Research Status on Factors Affecting Performance of Free-Space Coherent Detection Systems -- 1.5 Research Status on Factors Affecting Partially Coherent Beam Coherent Detection System -- 1.6 Research Status of Wavefront Correction -- 1.6.1 Research Status of Atmospheric Turbulence Compensation Technology -- 1.6.2 Research Status of Wavefront Correction Technology Abroad -- 1.6.3 Domestic Research Status of Wavefront Correction Technology -- References -- 2 Coherent Optical Communication -- 2.1 Basic Principles of Coherent Optical Communication -- 2.1.1 Fundamentals -- 2.1.2 Homodyne Detection -- 2.1.3 Heterodyne Detection -- 2.1.4 Detection of an Amplitude Modulated Signal -- 2.2 Coherent Modulation and Demodulation -- 2.2.1 Optical Modulation -- 2.2.2 Coherent Demodulation -- 2.2.3 System Performance -- 2.3 Factors Affecting Detection Sensitivity -- 2.3.1 Phase Noise -- 2.3.2 Intensity Noise -- 2.3.3 Polarization Noise -- 2.3.4 Key Technologies of Coherent Optical Communication Systems -- 2.4 Spatial Phase Conditions for Optical Heterodyne Detection -- 2.4.1 Spatial Phase Difference Conditions -- 2.4.2 Frequency Conditions -- 2.4.3 Polarization Conditions -- 2.5 Homodyne Detection and Heterodyne Detection -- 2.5.1 Homodyne Coherent Detection -- 2.5.2 Heterodyne Detection -- 2.6 Composition of Heterodyne Detection System -- 2.6.1 Wavefront Correction Module -- 2.6.2 Polarization Control Module.
2.6.3 Laser Frequency Stabilization Module -- 2.6.4 Balanced Detection Module -- 2.6.5 Coherent Demodulation Module -- 2.7 Performance Analysis of Heterodyne Detection System -- 2.7.1 Signal to Noise Ratio and Detection Sensitivity of Heterodyne Detection System -- 2.7.2 Performance Analysis of Heterodyne Detection System Under Ideal Conditions -- 2.7.3 Performance of Heterodyne Detection System with Optical Alignment Error -- 2.8 Signal-to-Noise Ratio, Bit Error Rate and Detection Sensitivity -- 2.8.1 Signal-to-Noise Ratio of Direct Detection and Heterodyne Detection -- 2.8.2 Bit Error Rate of Direct Detection and Heterodyne Detection -- 2.8.3 Analysis of Detection Sensitivity of Direct and Heterodyne Detection -- 2.9 Influence of Wavefront Distortion on Spatial Coherent Optical Communication -- 2.9.1 Principle of Wavefront Distortion -- 2.9.2 The Effect of Wavefront Distortion -- References -- 3 Spatial Light to Fiber Coupling and Beam Control -- 3.1 Space Optical-Fiber Coupling Technology -- 3.1.1 Ideal Lens-Single-Mode Fiber Coupling -- 3.1.2 Gaussian Beam Coupling -- 3.2 Spatial Plane Wave-Lens-Single Mode Fiber Coupling Under Weakly Turbulent Atmosphere -- 3.2.1 Light Field Distribution and Refractive Index Power Spectrum Under Atmospheric Turbulence -- 3.2.2 Lens Coupling Under Atmospheric Turbulence -- 3.2.3 Relative Variance in Fluctuation of Lens Coupled Optical Power Under Atmospheric Turbulence -- 3.2.4 Spatial Optical Coupling of Lens Array Under Atmospheric Turbulence -- 3.3 Automatic Alignment Algorithm for Spatial Light-Optical-Fiber Coupling -- 3.3.1 Simulated Annealing Algorithm -- 3.3.2 Particle Swarm Optimization -- 3.4 Beam Array Control Based on Maka Antenna -- 3.4.1 Maka Antenna and Existing Problems -- 3.4.2 Array Gaussian Beam Control Based on Maka Antenna.
3.4.3 Coupling Efficiency of Maka Antenna Under Atmospheric Turbulence -- References -- 4 Beam Polarization Control Technology -- 4.1 Advances in Beam Polarization Control -- 4.2 Coherent Optical Communication System with Polarization Control -- 4.2.1 Representation of Light Polarization -- 4.2.2 Polarization Control of Coherent Optical Communication Systems -- 4.3 Coherent Optical Communication Polarization Control Model and Control Algorithm -- 4.3.1 Polarization Control Model for Coherent Optical Communication Systems -- 4.3.2 Simulated Annealing Algorithm in Polarization Control -- 4.3.3 Application of Particle Swarm Algorithm in Polarization Control -- 4.3.4 Design of SPO Algorithm and Its Application in Polarization Control -- 4.3.5 Comparison of the Three Algorithms -- 4.4 Endless Reset of the Polarization Controller -- 4.4.1 Small Step Backward Reset Method and Direct Reset Method -- 4.4.2 Experiment of Direct Reset Method -- 4.5 Experiment of Polarization Control -- 4.5.1 Experimental Setup -- 4.5.2 Polarization-Controlled External Field Experiments -- References -- 5 Double Balanced Detection.-Wavefont Correction System -- 5.1 Domestic and International Development: History and Current Situation -- 5.1.1 Foreign Developments: History and Current Situation -- 5.1.2 Domestic Developments: History and Present Situation -- 5.2 Structure and Principle of Double-Balanced Detection System -- 5.2.1 Classification of 90° Optical Mixers Used in Double-Balanced Detection Techniques -- 5.2.2 Classification of Balanced Detectors -- 5.2.3 Principle of Double-Balanced Detection -- 5.3 Balance Mismatch Analysis of Double-Balanced Detection Technology -- 5.3.1 Effect of Mixer -- 5.3.2 Effect of Balanced Detectors -- 5.4 Common-Mode Rejection Ratio in Double-Balanced Detection System -- 5.4.1 Common-Mode Rejection Ratio -- 5.4.2 Signal-to-Noise Ratio.
5.4.3 Numerical Simulation -- 5.5 Optisystem Simulation of Double-Balanced Detection System -- 5.5.1 Simulation of Double-Balanced Detection System -- 5.5.2 Effect of Power Mismatch on the SNR of Double-Balanced Detection -- 5.5.3 Effect of Time Mismatch on SNR of Double-Balanced Detection -- References -- 6 Adaptive Optics Correction -- 6.1 Research Status of Adaptive Optics System -- 6.2 Adaptive Optics System in Coherent Optical Communication -- 6.2.1 Principles of Adaptive Optics -- 6.2.2 Wavefront Sensor -- 6.2.3 Working Principle of Wavefront Corrector -- 6.3 System Error Analysis -- 6.3.1 Error Analysis of Adaptive Optics System -- 6.3.2 Methods to Suppress Systematic Errors -- 6.4 Implementation of Wavefront Controller -- 6.4.1 Wavefront Reconstruction Theory -- 6.4.2 Measurement of Influence Matrix of Deformable Mirror -- 6.4.3 Realization of Wavefront Control Algorithm -- 6.5 Correction of Wavefront Distortion -- 6.5.1 Analysis of Closed-Loop Control Parameter Adjustment Process -- 6.5.2 Impact of Wavefront Phase Distortion on Mixing Efficiency -- 6.5.3 Impact of Mixing Efficiency on Coherent Optical Communication Systems -- 6.6 Experimental Verification -- 6.6.1 Analysis of Dynamic Characteristics of Wavefront Controller -- 6.6.2 Analysis of Wavefront Distortion Correction Effect -- References -- 7 Wavefont Sensorless Adaptive Optics Correction -- 7.1 Fundamentals of Adaptive Optics -- 7.1.1 Wavefront Corrector -- 7.1.2 Wavefront Controller -- 7.1.3 Stochastic Parallel Gradient Descent Algorithm -- 7.2 Correction of Wavefront of Aberrated Gaussian Beams Using SPGD Algorithm -- 7.2.1 Optical Transmission Equation and Multiphase Screen Method -- 7.2.2 Simulation of Gaussian Beam Transmitted in Atmospheric Turbulence -- 7.2.3 Signal Optical Wavefront Correction at Various Turbulence Intensities.
7.2.4 AO Technology for Improvement of Performance of Coherent Optical Communication System -- 7.3 Experimental Studies -- 7.3.1 Correction of Static Wavefront Distortion Using SPGD Algorithm -- 7.3.2 SPGD Algorithm Wavefront Correction for Outlier Detection Coherent Optical Communication System -- References -- 8 Wavefont Correction Technique of Spatial Coherent Optical Communication with LC-SLM -- 8.1 Phase Calibration of LC-SLM -- 8.1.1 LC-SLM Phase Calibration -- 8.1.2 Structure of LC-SLM -- 8.1.3 Jones Matrix Analysis of LC-SLM Phase Modulation Principle -- 8.2 Working Principle of Phase Calibration of LC-SLM -- 8.2.1 Interference Fringe Shift Method -- 8.2.2 Working Principle of Interference Fringe Movement Method -- 8.3 Phase Calibration Experiments -- 8.3.1 Phase Calibration Experiment of LC-SLM-R -- 8.3.2 Least Squares Fitting -- 8.4 LC-SLM-R Spatial Coherent Optical Communication Wavefront Correction System -- 8.4.1 LC-SLM-R Wavefront Distortion Correction Principle -- 8.4.2 Structure of Wavefront Correction System -- 8.5 Principle of Wavefront Measurement -- 8.5.1 Static Wavefront Measurement of Transverse Shear Interferometer -- 8.5.2 Shack-Hartmann Real-Time Wavefront Measurement Principle -- 8.6 Wavefront Reconstruction -- 8.6.1 Zernike Polynomial -- 8.6.2 Wavefront Reconstruction Based on Zernike Polynomial -- 8.7 LC-SLM-R Wavefront Correction Experiment -- 8.7.1 Static Wavefront Correction Experiment -- 8.7.2 Field Experiment -- References -- 9 Effect of Beam Mode on Coherent Detection System -- 9.1 Basic Theory of Pattern Decomposition -- 9.1.1 Mathematical Model of Incoherent Mode Decomposition -- 9.1.2 Coherent Module Decomposition -- 9.2 Effect of Beam Pattern on Performance of Coherent Detection Systems -- 9.2.1 Mathematical Modeling of Effect of Beam Patterns on Coherent Detection Systems Under Atmospheric Turbulence.
9.2.2 Effect of Beam Pattern on Performance of Coherent Detection Systems.
Titolo autorizzato: Coherent Optical Wireless Communication Principle and Application  Visualizza cluster
ISBN: 981-19-4823-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910633929703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Optical Wireless Communication Theory and Technology