Vai al contenuto principale della pagina

Nanostructured materials for supercapacitors / / edited by Sabu Thomas, Amadou Belal Gueye, Ram K. Gupta



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Nanostructured materials for supercapacitors / / edited by Sabu Thomas, Amadou Belal Gueye, Ram K. Gupta Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2022]
©2022
Descrizione fisica: 1 online resource (642 pages)
Disciplina: 621.315
Soggetto topico: Nanostructured materials
Persona (resp. second.): ThomasSabu
GueyeAmadou Belal
GuptaRam K.
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Intro -- Preface -- Contents -- Nanostructured Materials for Supercapacitors -- 1 Introduction -- 2 Nanocomposites for Supercapacitors -- 2.1 Transition Metal Nitrides -- 2.2 Hydroxides -- 2.3 Metal-Organic Frameworks (MOFs) -- 2.4 MXenes -- 3 Summary and Conclusion -- References -- Electrochemical Double Layer Capacitors -- 1 Introduction -- 2 Supercapacitor -- 2.1 A Brief Overview of the History of Supercapacitor -- 3 Classification of Supercapacitors -- 3.1 Electric Double-Layer Capacitor (EDLC) -- 3.2 Pseudocapacitor -- 3.3 Hybrid Capacitor -- 4 The Mechanisms of Energy Storage in EDLCs -- 4.1 Helmholtz Model -- 4.2 Gouy-Chapman or Diffuse Model -- 4.3 Stern Model -- 4.4 Grahame Model -- 4.5 Brockri-Devanathan-Muller Model -- 5 Electric Double-Layer in Supercapacitor -- 6 Electric Field Across the Double-Layer -- 7 Supercapacitor Parameter Evaluation -- 7.1 Capacitance -- 7.2 Voltammetry Capacitance -- 7.3 Galvanometric Capacitance -- 7.4 Energy and Power Densities -- 7.5 Cyclic Stability -- 7.6 Coulombic Efficiency -- 7.7 Thermal Stability -- 7.8 Self-discharge Rate -- 7.9 Charge Balancing Equation -- 8 Electrode Materials -- 8.1 Activated Carbon (AC) -- 8.2 Carbon Nanotubes (CNTs) -- 8.3 Graphene -- 8.4 Carbon Nanofibers -- 8.5 Hybrid Carbon Materials -- 9 Self-discharge in Supercapacitors -- 10 Applications of Supercapacitors -- 11 Conclusion -- References -- Pseudo-capacitors: Introduction, Controlling Factors and Future -- 1 Introduction -- 2 Operating Principle of Pseudo-capacitors -- 3 Phenomenon Occurring Inside Pseudo-capacitors -- 3.1 Adsorption or Underpotential Pseudo-capacitance -- 3.2 Redox Pseudo-capacitance -- 3.3 Intercalation Pseudo-capacitance -- 4 Parameters Governing Pseudo-capacitors -- 4.1 Active Material Growth and Morphology -- 4.2 Electrolyte Interaction with the Active Material -- 5 Conclusions -- References.
Fundamentals, Mechanism, and Materials for Hybrid Supercapacitors -- 1 Introduction and History -- 1.1 Brief History -- 1.2 Introduction to Supercapacitors -- 2 Fundamental of Hybrid Supercapacitor and Its Storage Mechanism -- 2.1 Fundamental of Hybrid Supercapacitors -- 2.2 Storage Mechanism of Hybrid Supercapacitors -- 3 Structure and Design of Hybrid Supercapacitors -- 3.1 Components and Architecture of Hybrid Supercapacitors -- 3.2 Design of Hybrid Supercapacitors -- 4 Characteristics of Hybrid Supercapacitors -- 4.1 Energy Capacity -- 4.2 Power -- 5 Applications -- 6 Conclusion -- References -- Characterization Methods for Supercapacitors -- 1 Introduction -- 2 Parameter Definition -- 2.1 Capacitance -- 2.2 Specific Energy -- 2.3 Specific Power -- 3 Electrochemical Characterization Methods -- 3.1 Cell Configuration -- 3.2 Cyclic Voltammetry -- 3.3 Galvanostatic Charge and Discharge Analysis (GCD) -- 3.4 Stability Analysis: Long-Term Galvanostatic Charge and Discharge (GCD) Versus Floating Voltage Holds (FVH) for Aging Analysis -- 3.5 Electrochemical Impedance Spectroscopy (EIS) -- 3.6 Self-discharge -- 4 Other Physical Characterization Methods -- 4.1 In-Situ Nuclear Magnetic Resonance (NMR) -- 4.2 In-Situ Electrochemical Quartz Crystal Microbalance (EQCM) -- 4.3 In-Situ X-ray Diffraction (XRD) Spectroscopy -- 4.4 In-Situ Atomic Force Microscopy (AFM) -- 4.5 In-Situ Raman Spectroscopy -- 4.6 In-Situ Fourier Transform Infrared (FTIR) Spectroscopy -- 5 Conclusion -- References -- Nanosupercapacitors -- 1 Introduction -- 2 Working Principle -- 2.1 Electrochemical Double-Layer Capacitor (EDLC) -- 2.2 Pseudocapacitors -- 2.3 Hybrid Supercapacitors -- 3 Electrode Preparation -- 4 Miniaturized/Nanosupercapacitors -- 4.1 Miniaturized Supercapacitors(MSCs) -- 4.2 Fibrous MSCs -- 4.3 Paper and Textile MSCs -- 5 Conclusion and Outlook -- References.
Mesoporous Carbon for Supercapacitors -- 1 Introduction -- 2 Working Principle of SCs -- 2.1 EDLCs -- 2.2 Pseudocapacitors -- 2.3 Hybrid SCs -- 3 Synthesis of Representative Mesoporous Carbon -- 3.1 Templating Method -- 3.2 Template-Free Method -- 4 Mesoporous Carbon for Supercapacitors -- 4.1 Mesoporous Carbon (Pure Carbon) -- 4.2 N-doped Mesoporous Carbon -- 4.3 Other Non-Metal Doped Mesoporous Carbon Materials -- 4.4 Hierarchical Porous Carbon (HPC) -- 5 Conclusion and Perspective -- References -- Activated Carbon-Based Supercapacitors -- 1 Introduction -- 2 Pure Biomass AC Materials -- 3 Doped Biomass AC Materials -- 4 Mixed Biomass AC Materials -- 5 Composite Materials with ACs -- 6 Applications of ACs in SCs -- 7 Conclusion and Outlook -- References -- Carbon Aerogels for Supercapacitor Applications -- 1 Introduction -- 2 Synthesis of Carbon-Based Aerogels -- 2.1 Hydrothermal Carbonization -- 2.2 Pyrolytic Carbonization -- 3 Applications of Carbon Aerogel Materials in Supercapacitors -- 3.1 Organic Polymer-Based Aerogels -- 3.2 Biomass-Derived Aerogel -- 3.3 Graphene-Based Aerogel -- 4 Conclusion -- References -- Carbon Nanofibers for Supercapacitors -- 1 Introduction -- 2 Overview of Electrospinning Derived CNFs -- 2.1 Principle of Electrospinning -- 2.2 Structures of CNFs -- 2.3 Advantages of Electrospinning Derived CNFs -- 3 Applications in SCs -- 3.1 CNFs -- 3.2 Activated CNFs -- 3.3 Hybrid CNFs -- 4 Conclusions and Perspectives -- References -- Graphene-Based Nanomaterial for Supercapacitor Application -- 1 Introduction -- 2 Graphene Structure -- 3 Graphene Synthesis -- 3.1 Mechanical Exfoliation -- 3.2 Liquid-Phase Exfoliation -- 3.3 Oxidation-Reduction -- 3.4 Chemical Vapor Deposition -- 3.5 Epitaxial Growth on Silicon Carbide (SiC) -- 4 Graphene Derivatization -- 4.1 Graphene Oxide (GO) -- 4.2 Reduced Graphene Oxide (rGO).
5 Graphene as Supercapacitor Material -- 5.1 0-D (Zero-Dimensional) Nanomaterials -- 5.2 1-D (One-Dimensional) Nanomaterials -- 5.3 2-D (Two-Dimensional) Nanomaterials -- 5.4 3-D (Three-Dimensional) Nanomaterials -- 6 Asymmetric Graphene-Based Materials for Supercapacitors -- 7 Conclusion and Prospects -- References -- Nanocomposites of Carbon Nanotubes for Electrochemical Energy Storage Applications -- 1 Introduction -- 2 Structure and Properties of Carbon Nanotubes -- 3 Electronic Properties of CNTs -- 4 Application of CNTs in Energy Storage Devices -- 4.1 Supercapacitors -- 4.2 CNTs in Alkali Metal Ion Batteries -- 4.3 CNTs in Fuel Cells -- 5 Conclusion -- References -- Transition Metal Oxides for Supercapacitors -- 1 Introduction -- 2 Types of TMOs -- 2.1 Pseudocapacitor-Type TMOs -- 2.2 Battery-Type TMOs -- 3 Combinations of TMOs -- 4 Hybridization of TMOs -- 5 Preparation Methods of TMOs -- 6 Metal-organic Frameworks (MOFs)-Derived/Based TMOs -- 7 TMOs Towards Flexible SCs -- 8 Summary -- References -- Novel 3D Hierarchical Porous Carbon/Metal Oxides or Carbide Composites -- 1 Introduction -- 2 Carbon Materials/Metal Oxides Composites with 3D Hierarchical Porous Structure -- 2.1 3D Hierarchical Porous Composites Constructed by 0D and 3D -- 2.2 3D Hierarchical Porous Composites Constructed by 0D, 2D, and 3D -- 3 Carbon Materials/Metal Carbide Composites with 3D Hierarchical Porous Structure -- 3.1 3D Hierarchical Porous Composites Constructed by 2D and 3D -- 3.2 3D Hierarchical Porous Composites Constructed by 1D and 2D -- 4 Prospects and Challenge -- References -- Nanostructured 2D Transition Metal Dichalcogenides (TMDs) as Electrodes for Supercapacitor -- 1 Introduction -- 2 2-Dimensional Transition Metal Dichalcogenides (2D TMDs) -- 3 Advantages of 2D TMDs Nanostructures -- 4 Molybdenum Disulfide (MoS2) as 2D TMDs.
4.1 Atomic Structure of MoS2 -- 4.2 Preparation of 2D MoS2 -- 4.3 Hybrid Nanostructures of MoS2 -- 4.4 Metallic MoS2 (1T-MoS2) as 2D TMDs -- 4.5 Fabrication Methods for Metallic MoS2 (1T-MoS2) -- 5 Applications of 2D TMDs Nanostructures -- 5.1 Electrical and Optoelectronic Applications -- 5.2 Energy Applications -- 5.3 MoS2 as Supercapacitor Electrodes -- 6 Challenges of 2D TMDs Electrode Materials -- 7 Conclusion -- References -- Recent Development in Chalcogenides for Supercapacitor Applications -- 1 Introduction -- 2 Characterizations of NiX (X = S, Se, Te) Based Materials -- 3 Recent Development in NiX (X = S, Se, Te) Based Electrode Materials for Supercapacitor Application -- 3.1 Nickle Sulfides -- 3.2 Nickel Selenide -- 3.3 Nickel Telluride -- 4 Concluding Remark -- References -- Chalcogenide Based 2D Nanomaterials for Supercapacitors -- 1 Introduction -- 2 Chalcogenide-Based Carbonaceous Materials for Supercapacitors -- 3 Chalcogenide Hybrids with Other 2D Analogues for Supercapacitors -- 4 Recent Development of Chalcogenides for Asymmetric Supercapacitors -- 5 Conclusions -- References -- Chalcogenides Based Nano Composites for Supercapacitors -- 1 Introduction -- 2 Transition Metal Sulfides (TMSs) Based Nanocomposites for Supercapacitor -- 2.1 Metal Sulfide/Metal Oxides Composite Material -- 2.2 Metal Sulfide/Quantum Dot Hybrids -- 2.3 Nickel Sulfide Nanohybrids -- 3 Transition Metal Selenides (TMSes) Based Nanocomposites Electrode for Supercapacitor -- 3.1 Combination of Metals Selenides Hybrids for Supercapacitor -- 4 Transition Metal Tellurides (TMTs) and Their Composites Based Supercapacitor -- 5 TMCs/Carbon-Based Nanocomposites Material for Hybrid Capacitor Applications -- 5.1 Metal Sulfide/Carbon Hybrids as a Nanocomposite -- 5.2 Metal Selenides/Graphene Composites -- 6 TMCs for Hybrid Ion Capacitors.
7 Strategies to Increase the Performance of the TMCs-Based Supercapacitor.
Titolo autorizzato: Nanostructured materials for supercapacitors  Visualizza cluster
ISBN: 3-030-99302-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910574050903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Advances in Material Research and Technology