Vai al contenuto principale della pagina

Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Bazi Yakoub Visualizza persona
Titolo: Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images Visualizza cluster
Pubblicazione: Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica: 1 electronic resource (438 p.)
Soggetto topico: Research & information: general
Soggetto non controllato: synthetic aperture radar
despeckling
multi-scale
LSTM
sub-pixel
high-resolution remote sensing imagery
road extraction
machine learning
DenseUNet
scene classification
lifting scheme
convolution
CNN
image classification
deep features
hand-crafted features
Sinkhorn loss
remote sensing
text image matching
triplet networks
EfficientNets
LSTM network
convolutional neural network
water identification
water index
semantic segmentation
high-resolution remote sensing image
pixel-wise classification
result correction
conditional random field (CRF)
satellite
object detection
neural networks
single-shot
deep learning
global convolution network
feature fusion
depthwise atrous convolution
high-resolution representations
ISPRS vaihingen
Landsat-8
faster region-based convolutional neural network (FRCNN)
single-shot multibox detector (SSD)
super-resolution
remote sensing imagery
edge enhancement
satellites
open-set domain adaptation
adversarial learning
min-max entropy
pareto ranking
SAR
Sentinel–1
Open Street Map
U–Net
desert
road
infrastructure
mapping
monitoring
deep convolutional networks
outline extraction
misalignments
nearest feature selector
hyperspectral image classification
two stream residual network
Batch Normalization
plant disease detection
precision agriculture
UAV multispectral images
orthophotos registration
3D information
orthophotos segmentation
wildfire detection
convolutional neural networks
densenet
generative adversarial networks
CycleGAN
data augmentation
pavement markings
visibility
framework
urban forests
OUDN algorithm
object-based
high spatial resolution remote sensing
Generative Adversarial Networks
post-disaster
building damage assessment
anomaly detection
Unmanned Aerial Vehicles (UAV)
xBD
feature engineering
orthophoto
unsupervised segmentation
Persona (resp. second.): PasolliEdoardo
BaziYakoub
Sommario/riassunto: The rapid growth of the world population has resulted in an exponential expansion of both urban and agricultural areas. Identifying and managing such earthly changes in an automatic way poses a worth-addressing challenge, in which remote sensing technology can have a fundamental role to answer—at least partially—such demands. The recent advent of cutting-edge processing facilities has fostered the adoption of deep learning architectures owing to their generalization capabilities. In this respect, it seems evident that the pace of deep learning in the remote sensing domain remains somewhat lagging behind that of its computer vision counterpart. This is due to the scarce availability of ground truth information in comparison with other computer vision domains. In this book, we aim at advancing the state of the art in linking deep learning methodologies with remote sensing image processing by collecting 20 contributions from different worldwide scientists and laboratories. The book presents a wide range of methodological advancements in the deep learning field that come with different applications in the remote sensing landscape such as wildfire and postdisaster damage detection, urban forest mapping, vine disease and pavement marking detection, desert road mapping, road and building outline extraction, vehicle and vessel detection, water identification, and text-to-image matching.
Titolo autorizzato: Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910557747903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui