Vai al contenuto principale della pagina

Statistical Regression Modeling with R : Longitudinal and Multi-level Modeling / / by Ding-Geng (Din) Chen, Jenny K. Chen



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Chen Ding-Geng (Din) Visualizza persona
Titolo: Statistical Regression Modeling with R : Longitudinal and Multi-level Modeling / / by Ding-Geng (Din) Chen, Jenny K. Chen Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Edizione: 1st ed. 2021.
Descrizione fisica: 1 online resource (239 pages)
Disciplina: 519.536
Soggetto topico: Statistics
Programming languages (Electronic computers)
Statistical Theory and Methods
Applied Statistics
Programming Language
Anàlisi de regressió
R (Llenguatge de programació)
Soggetto genere / forma: Llibres electrònics
Persona (resp. second.): ChenJenny K.
Nota di contenuto: 1. Linear Regression -- 2. Introduction to Multi-Level Regression -- 3. Two-Level Multi-Level Modeling -- 4. Higher-Level Multi-Level Modeling -- 5. Longitudinal Data Analysis -- 6. Nonlinear Regression Modeling -- 7. Nonlinear Mixed-Effects Modeling -- 8. Generalized Linear Model -- 9. Generalized Multi-Level Model for Dichotomous Outcome -- 10. Generalized Multi-Level Model for Counts Outcome.
Sommario/riassunto: This book provides a concise point of reference for the most commonly used regression methods. It begins with linear and nonlinear regression for normally distributed data, logistic regression for binomially distributed data, and Poisson regression and negative-binomial regression for count data. It then progresses to these regression models that work with longitudinal and multi-level data structures. The volume is designed to guide the transition from classical to more advanced regression modeling, as well as to contribute to the rapid development of statistics and data science. With data and computing programs available to facilitate readers' learning experience, Statistical Regression Modeling promotes the applications of R in linear, nonlinear, longitudinal and multi-level regression. All included datasets, as well as the associated R program in packages nlme and lme4 for multi-level regression, are detailed in Appendix A. This book will be valuable in graduate courses on applied regression, as well as for practitioners and researchers in the fields of data science, statistical analytics, public health, and related fields.
Titolo autorizzato: Statistical regression modeling with R  Visualizza cluster
ISBN: 3-030-67583-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910483312403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Emerging Topics in Statistics and Biostatistics, . 2524-7743