Vai al contenuto principale della pagina
Autore: | Kirtland Joseph (Mathematics professor) |
Titolo: | Complementation of normal subgroups : in finite groups |
Pubblicazione: | Berlin, [Germany] ; ; Munich, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017 |
©2017 | |
Descrizione fisica: | 1 online resource (144 pages) : illustrations, tables |
Disciplina: | 512/.23 |
Soggetto topico: | Finite groups |
Sylow subgroups | |
Soggetto genere / forma: | Electronic books. |
Nota di bibliografia: | Includes bibliographical references and indexes. |
Nota di contenuto: | Frontmatter -- Preface -- Contents -- Notation -- 1. Prerequisites -- 2. The Schur-Zassenhaus theorem: A bit of history and motivation -- 3. Abelian and minimal normal subgroups -- 4. Reduction theorems -- 5. Subgroups in the chief series, derived series, and lower nilpotent series -- 6. Normal subgroups with abelian sylow subgroups -- 7. The formation generation -- 8. Groups with specific classes of subgroups complemented -- Bibliography -- Author index -- Subject index |
Sommario/riassunto: | Starting with the Schur-Zassenhaus theorem, this monograph documents a wide variety of results concerning complementation of normal subgroups in finite groups. The contents cover a wide range of material from reduction theorems and subgroups in the derived and lower nilpotent series to abelian normal subgroups and formations. ContentsPrerequisitesThe Schur-Zassenhaus theorem: A bit of history and motivationAbelian and minimal normal subgroupsReduction theoremsSubgroups in the chief series, derived series, and lower nilpotent seriesNormal subgroups with abelian sylow subgroupsThe formation generationGroups with specific classes of subgroups complemented |
Titolo autorizzato: | Complementation of normal subgroups |
ISBN: | 3-11-047892-7 |
3-11-048021-2 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910467839803321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |