Vai al contenuto principale della pagina
Titolo: | When form becomes substance : power of gestures, diagrammatical intuition, and phenomenology of space / / edited by Luciano Boi, Carlos Lobo |
Pubblicazione: | Cham, Switzerland : , : Birkhäuser, , [2022] |
©2022 | |
Descrizione fisica: | 1 online resource (607 pages) |
Disciplina: | 001.4226 |
Soggetto topico: | Charts, diagrams, etc |
Information visualization | |
Science - Philosophy | |
Visualització de la informació | |
Diagrames | |
Filosofia de la ciència | |
Fenomenologia | |
Soggetto genere / forma: | Llibres electrònics |
Persona (resp. second.): | BoiL <1957-> (Luciano) |
LoboCarlos | |
Nota di contenuto: | Intro -- Introduction -- Topological Visualisation, or How to Apprehend the Invisible -- Feynman Diagrams: A New Way Forward in Theoretical Physics -- Diagrammatics and Invariants in Knot and Braid Theory -- Philosophical and Scientific Implications -- Diagrammatics and Category Theory -- A French Singularity in Epistemological Field: Gilles Châtelet -- Phenomenology of Space (and Time) and Diagrammatic Epistemology -- Towards a "Diagrammatic Critique of Aesthetics" -- Acknowledgments -- Contents -- Part I Logic, Forms and Diagrams -- The Semiotics of Laws of Form -- Introduction -- Finding Distinction -- Finding Primary Arithmetic -- Finding Logic -- Finding Mathematics -- The Arctic Essay -- Epilogue -- References -- Can We "Show" the Correctness of Reasoning? On the Role of Diagrammatic Spatialization in Logical Justification -- Introduction -- The Eulerian Thesis: The Logical Correctness of the Diagrams "Jumps to the Eyes" -- Determining the Logical Framework of Our Research -- The Late Emergence of "Analytical" Logic Diagrams in a Pedagogical Context -- First Section: The Cognitive Advantages of the Diagrammatic Method -- Second Section: Can Diagrams Be Given the Task of Validating Reasoning? -- Third Section: Can a Diagram Show ("donner à voir") the Nature of a Proposition or the Correctness of a Reasoning? -- Back to Euler -- Showing the Nature of a Proposition -- Showing the Correctness of a Reasoning -- Some Remarks on the Relationship Between the Principles of Logic and Spatiality in Syllogistic (From Aristotle to Hamilton) -- Conclusion: Summary and Discussion -- References -- Articles and Monographs -- Proceedings of International Colloquia -- Catégorification et méthode -- Le polynôme de Jones -- La catégorification du polynôme de Jones -- La méthode de catégorification -- La théorie topologique quantique des champs. |
Diagrammes et méthode -- Référenes -- Part II Geometrical Spaces and Topological Knots, Old and New -- Which Came First, the Circle or the Wheel? From Idea (δεα) to Concrete Construction -- Introduction -- Geometric Ideas and their Diagrams -- Digital Fabrication -- Geometry in Higher Dimension -- Bibliography -- Sitography -- The Classical Style in Contemporary Geometry: Views from a Person Working in the Field -- Introduction -- Fragments of Basic Algebraic Geometry -- Sterographic Projections in Dimension 1 and 2 (Figs. 4 and 5) -- Origins of Birational Geometry and Classification -- Cremona Transformations (Fig. 6) -- de Jonquiéres Transformations (Fig. 8) -- Classical Problems and Rational Parametrizations: Curves and Surfaces -- Classical Problems and Rational Parametrizations: Cubics -- The Classical Turn in Algebraic Geometry -- References -- Knots, Diagrams and Kids' Shoelaces. On Space and their Forms -- Introductive Remarks: Shoelaces, Knots, and the Intuition of Space -- Exploring and Visualizing 3-manifols and the Importance of Topology -- Equivalence of Images and of Forms: Manifolds, Knots and Diagrams -- Embeddings and Isotopies -- Mathematical Propaedeutic for the Understanding of Knots -- Knots and Links: Equivalence, Invariants and the Knot Complement -- The Alexander and Jones Polynomials -- Crossing Changes of Knots -- Back to Classical Invariants of Knots and Links -- Historical Note on Knots and their Diagrams -- Equivalence of Knots and Links -- From the Alexander Polynomial to Seifert Surfaces for Knots -- Reidemeister Moves and Classical Knot Invariants -- Dehn Surgery of Knots and his Work on Knot Theory and 3-dimensional Manifolds -- The Fundamental Group of Knots and Links -- Invariants of 3-manifolds and Hyperbolic Knots -- The Importance of the Linking Number in Molecular Biology. | |
Geometrical and Topological Properties of the Double Helix and Supercoiling -- Knots, Links, and Topological Quantum Field Theories: An Overview -- Knots and Dynamics Systems -- The Energy of Knots -- References -- Part III Diagrams, Graphs and Representation -- Diagrammes planaires qui représentent des objets de dimension 1, 2, 3 et 4 -- Problème de classification -- Approche combinatoire -- Noeuds (dimension 1) -- Surfaces (dimension 2) -- Codage planaire des surfaces -- Variétés de dimension 3 -- Polyèdres spéciaux -- Polyèdres spéciaux épaississable -- Reconstruction -- Codage graphique -- Mouvements locaux -- Calcul graphique -- Variétés de dimension 4 -- Codage graphique des ombres -- References -- From Singularities to Graphs -- Introduction -- What Is the Meaning of Such Graphs? -- What Does it Mean to Resolve the Singularities of an Algebraic Surface? -- Representations of Surface Singularities Around 1900 -- Du Val's Singularities, Coxeter's Diagrams and the Birth of Dual Graphs -- Mumford's Paper on the Links of Surface Singularities -- Waldhausen's Graph Manifolds and Neumann's Calculus with Graphs -- Conclusion -- References -- Part IV Diagrams, Physical Forces and Path Integrals -- Mathematical Aspects of Feynman Path Integrals, Divergences, Quantum Fields and Diagrams, and Some More General Reflections -- Introduction -- The Case of Quantum Fields -- Divergences and Diagrams -- Some Conclusions, Philosophical Remarks and Reflections -- References -- Some Remarks on Penrose Diagrams -- Introduction -- Reflexions on the Different Notions of Dimensions -- The Notion of a Function -- A Second Kind of Diagram -- The Introduction of Infinity -- Some Complements to Conformal Geometry and General Relativity -- Cosmology and Conformal Diagrams -- Philosophical Comments -- Final Complements -- References. | |
Part V Phenomenology in and of Mathematical Diagrams -- Phénoménologie, représentations, combinatoire -- Représentations géométriques: une approche classique -- Représentations géométriques: l'approche mathématique -- Représentations géométriques: l'approche phénoménologique -- Partitions non croisées -- Représentations graphiques -- De l'usage des représentations diagrammatiques. -- De la portée des représentations diagrammatiques -- Références -- Husserl, Intentionality and Mathematics: Geometry and Category Theory -- Intentionality and Space -- The Idea of a Mannigfaltigkeitslehre -- Space and Time in Phenomenology -- Issues of Foundation in Phenomenology through Category Theory -- References -- Diagrams of Time and Syntaxes of Consciousness: A Contribution to the Phenomenology of Visualization -- The Time Diagram Has Been Touched Upon (Varela, Weyl) -- Phenomenological Elucidation of the Subjective Resources of the Mathematical Construction of Linear Time -- The Specious Time of Neurophenomenology -- Phenomenology of the Use of Diagrams in Science Including Phenomenology -- Diagrammatic Underpinnings of Scientific Knowledge -- The Use of Diagrams in Phenomenology -- A Second Example: Intersubjective Constitution and Relativisation of the Original Coordinate System -- Symbolisation and Formal Writing in Phenomenology -- Symbolisation and Diagrammatisation of Intentional Analysis -- Intentionality as a System of Modification and Its Symbolism -- Analysis of the System of Continuous, i.e. Temporal Changes in 1913 -- An Example of Moving from an Analysis to a Mathematical Model -- Phenomenology and Diagrammatic of Lived Time -- The Dialectic of Phenomenological Reflection, Symbolisation and Diagram Construction Between 1905 and 1918 -- Diagrams of Retentions and Drafts of a Chronometry. | |
From Infinitesimal Analysis to Complex Analysis of Phenomenological Time -- Gaps in the 1905 Diagrams -- An Important Gap in the Initial Retention Diagram: The Meaning of the Zero -- Diagrams of the on-in-the-Other (or Nesting) and Intertwining of Retentions and Protentions -- Diagrams in Reflection -- Conclusion: Perspectives for a General Theory of Possible Times -- References -- Part VI Diagrams, Gestures and Subjectivity -- A Topological Analysis of Space-Time-Consciousness: Self, Self-Self, Self-Other -- Knot Logic: Linking as Mutuality -- Belongingness: Not-I, Knot-I -- Self-Mutuality as Mutuality: Mutuality as Self-Mutuality -- Plurality of Now's -- Music -- Kauffman's Universe and HYK's Self -- References -- Gestes, diagrammes et subjectivité -- Un exemple de diagramme social (et ses gestes) -- Prendre sur soi, le 0-milieu -- Rapport à soi, la verticale -- Tourner autour de soi, le trou -- Le virtuel-Temps événementiel -- Some Prolegomena for a Contemporary "Critique of Imagination" -- Six Guiding Theses -- Imagination: Common Sense Notions -- Imagination: Philosophic Insights from Leibniz, Hume, Kant and Husserl -- Imagination: Hints from Neuroscience -- Bibliography -- Le langage diagrammatique au-delà de la différencephénoménologique -- Introduction -- La première forme canonique de notre rapport au monde : la signifiance -- De la signifiance au calcul : brève histoire de la différence phénoménologique -- Conclusion -- Part VII Diagrams: from Mathematics to Aesthetics -- Ars diagrammaticae -- Le phénomène de compactification -- Du diagramme comme preuve par l'image -- Quelques précisions maintenant concernant la désintrication des concepts d'Image, de Figure & -- de Diagramme. -- Grid Diagram: Deleuze's Aesthetics Applied to Maggs's Photographs -- Grid as Diagram in Portraits -- Faciality of Portraits -- Grid and Virtuality. | |
Dada Diagrams/Dada Portraits. | |
Titolo autorizzato: | When form becomes substance |
ISBN: | 3-030-83125-6 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 996499866903316 |
Lo trovi qui: | Univ. di Salerno |
Opac: | Controlla la disponibilità qui |