Vai al contenuto principale della pagina

Big Scientific Data Management [[electronic resource] ] : First International Conference, BigSDM 2018, Beijing, China, November 30 – December 1, 2018, Revised Selected Papers / / edited by Jianhui Li, Xiaofeng Meng, Ying Zhang, Wenjuan Cui, Zhihui Du



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Big Scientific Data Management [[electronic resource] ] : First International Conference, BigSDM 2018, Beijing, China, November 30 – December 1, 2018, Revised Selected Papers / / edited by Jianhui Li, Xiaofeng Meng, Ying Zhang, Wenjuan Cui, Zhihui Du Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Edizione: 1st ed. 2019.
Descrizione fisica: 1 online resource (XIII, 332 p. 172 illus., 113 illus. in color.)
Disciplina: 502.85
Soggetto topico: Big data
Computers
Computer organization
Artificial intelligence
Management information systems
Computer science
Computer security
Big Data
Information Systems and Communication Service
Computer Systems Organization and Communication Networks
Artificial Intelligence
Management of Computing and Information Systems
Systems and Data Security
Persona (resp. second.): LiJianhui
MengXiaofeng
ZhangYing
CuiWenjuan
DuZhihui
Note generali: Includes index.
Nota di contenuto: Application cases in the big scientific data management -- Paradigms for enhancing scientific discovery through big data -- Data management challenges posed by big scientific data -- Machine learning methods to facilitate scientific discovery -- Science platforms and storage systems for large scale scientific applications -- Data cleansing and quality assurance of science data -- Data policies.
Sommario/riassunto: This book constitutes the refereed proceedings of the First International Conference on Big Scientific Data Management, BigSDM 2018, held in Beijing, Greece, in November/December 2018. The 24 full papers presented together with 7 short papers were carefully reviewed and selected from 86 submissions. The topics involved application cases in the big scientific data management, paradigms for enhancing scientific discovery through big data, data management challenges posed by big scientific data, machine learning methods to facilitate scientific discovery, science platforms and storage systems for large scale scientific applications, data cleansing and quality assurance of science data, and data policies.
Titolo autorizzato: Big Scientific Data Management  Visualizza cluster
ISBN: 3-030-28061-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996466435603316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Information Systems and Applications, incl. Internet/Web, and HCI ; ; 11473