Vai al contenuto principale della pagina

Electric vehicle design : design, simulation and applications / / edited by Krishan Arora, Suman Lata Tripathi and Himanshu Sharma



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Electric vehicle design : design, simulation and applications / / edited by Krishan Arora, Suman Lata Tripathi and Himanshu Sharma Visualizza cluster
Pubblicazione: Hoboken, NJ : , : John Wiley & Sons, Inc.
Beverly, MA : , : Scrivener Publishing LLC, , 2024
Newark : , : John Wiley & Sons, Incorporated, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (358 pages)
Disciplina: 629.22/93
Soggetto topico: Electric vehicles - Design and construction
Altri autori: TripathiSuman Lata  
SharmaHimanshu  
Persona (resp. second.): AroraKrishan
TripathiSuman Lata
SharmaHimanshu
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Development of Braking Systems in Fuel Cell Electric Vehicles -- 1.1 Introduction -- 1.2 Historical Background of Fuel Cell -- 1.3 ADVISOR -- 1.4 Why Hydrogen is Preferred -- 1.5 What is a Fuel Cell? -- 1.6 Working of Fuel Cells -- 1.7 Types of Fuel Cells -- 1.7.1 Direct Methanol Fuel Cell (DMFC) -- 1.7.2 Phosphoric Acid Fuel Cell (PAFC) -- 1.7.3 Alkaline Fuel Cell (AFC) -- 1.7.4 Solid Oxide Fuel Cell (SOFC) -- 1.7.5 Molten Carbonate Fuel Cell (MCFC) -- 1.8 Block Diagram of Vehicle on MATLAB/Simulink -- 1.9 Braking System in Vehicle -- 1.10 Regenerative Braking System -- 1.11 Anti-Lock Braking System (ABS) -- 1.11.1 Component of ABS -- 1.11.1.1 Wheel Speed Sensor -- 1.11.1.2 Valves -- 1.11.1.3 Pumps -- 1.11.1.4 Electronic Control Unit -- 1.11.2 Types of the ABS Model -- 1.11.3 Anti-Lock Braking System Plot -- 1.12 Conclusion -- References -- Chapter 2 Design and Applications of Fuel Cells -- 2.1 Introduction -- 2.2 Types of Electric Vehicles -- 2.2.1 Battery Electric Vehicles (BEVs) -- 2.2.2 Hybrid Electric Vehicles (HEVs) -- 2.2.3 Plug-In Hybrid Electric Vehicles (PHEVs) -- 2.2.4 Fuel Cell Electric Vehicles (FCEVs) -- 2.3 Design Equations of Fuel Cells -- 2.3.1 Nernst Equation -- 2.3.2 Ohm's Law -- 2.3.3 Power Output -- 2.3.4 Efficiency Equation -- 2.3.5 Kinetic Current Density Equation -- 2.3.6 Over-Potential Equation -- 2.3.7 Heat Generation Equation -- 2.4 Designing of Fuel Cells -- 2.5 Types of Fuel Cells -- 2.6 Solid Oxide FCs (SOFCs) -- 2.6.1 Working of SOFCs -- 2.6.2 Advantages of SOFCs -- 2.6.3 Disadvantages of SOFCs -- 2.6.4 Applications of SOFCs -- 2.7 Alkaline Fuel Cells (AFCs) -- 2.7.1 Working of AFCs -- 2.7.2 Advantages of AFCs -- 2.7.3 Disadvantages of AFCs -- 2.7.4 Applications of AFCs -- 2.8 Molten Carbonate Fuel Cell (MCFC) -- 2.8.1 Working of MCFC.
2.8.2 Advantages of MCFCs -- 2.8.3 Disadvantages of MCFCs -- 2.8.4 Applications of MCFCs -- 2.9 Phosphoric Acid Fuel Cells (PAFCs) -- 2.9.1 Working of PAFCs -- 2.9.2 Advantages of PAFCs -- 2.9.3 Disadvantages of PAFCs -- 2.9.4 Applications of PAFCs -- 2.10 Polymer Electrolyte Membrane Fuel Cell (PEMFC) -- 2.10.1 Working of PEMFC -- 2.10.2 Advantages of PEMFCs -- 2.10.3 Advantages of PEMFCs -- 2.10.4 Applications of PEMFCs -- 2.11 Direct Methanol Fuel Cells (DMFCs) -- 2.11.1 Working of DFMC -- 2.11.2 Advantages of DMFCs -- 2.11.3 Disadvantages of DMFCs -- 2.11.4 Applications of DMFCs -- 2.12 Parameters Affecting the Performance of FCs -- References -- Chapter 3 Smart Energy Management and Monitoring System for Electric Vehicles with IoT Integration -- 3.1 Introduction -- 3.2 The Control of Electric Vehicles Using IoT -- 3.2.1 Battery Management System -- 3.2.2 Safe and Intelligent Driving -- 3.2.3 System for Fault Alert and Preventative Maintenance -- 3.2.4 Data from Telemetry -- 3.2.4.1 Battery Usage Information -- 3.2.4.2 Report on Charging -- 3.2.4.3 Notify About Nearby Charging Stations -- 3.2.4.4 Data on Driver Behavior -- 3.3 IoT Management Issues with Electric Vehicles -- 3.3.1 Internet Safety -- 3.3.2 Higher Price -- 3.3.3 Considering the Challenges and Advantages -- 3.4 Monitoring and Management Benefits of IoT -- 3.4.1 IoT and Battery Management Systems -- 3.4.2 IoT for Safe and Intelligent Driving -- 3.4.3 Theft Prevention -- 3.4.4 Detection of Falling or Crashes -- 3.4.5 Battery Leasing Made Simple -- 3.5 Predictive Maintenance System with Fault Alerts -- 3.6 IoT Management and Monitoring Issues with Electric Vehicles -- 3.6.1 Threat from Cyber Attacks -- 3.6.2 Electric Car Prices are Quite High -- 3.6.3 Technological Difficulty -- 3.6.4 Connectivity and Reliance on Power -- 3.6.5 Battery Management and Monitoring System.
3.6.6 Prototype of a Battery Charge Control and Monitoring System -- 3.6.7 Scenario for the Battery Monitoring and Management System -- 3.7 Microcontroller -- 3.7.1 DC Current Sensor -- 3.7.2 Fuel Gauge Module for Li-Lon Batteries -- 3.8 IoT-Based Systems for Battery Management and Monitoring -- 3.9 Design of Battery Charge Control and Monitoring System -- 3.10 Results and Discussion -- 3.11 Conclusions -- 3.12 Future Scope of IoT in Electric Vehicles -- References -- Chapter 4 A Review of Electric Vehicles: Technologies and Challenges -- 4.1 Introduction -- 4.2 Electric Motors -- 4.2.1 DC Series Motor -- 4.2.2 Brushless DC Motors -- 4.2.2.1 Out-Runner-Type BLDC Motor -- 4.2.2.2 In-Runner-Type BLDC Motor -- 4.2.3 Permanent Magnet Synchronous Motor -- 4.2.4 Three-Phase AC Induction Motors -- 4.2.5 Switched Reluctance Motors -- 4.3 Power Electronic Converters -- 4.3.1 Bi-Directional DC-DC Converter -- 4.3.1.1 Non-Isolated Converters -- 4.3.1.2 Isolated Converters -- 4.4 Battery in Electric Vehicles -- 4.4.1 Types of Battery in Electric Vehicles -- 4.4.2 Traditional Battery Charging Approach -- 4.4.2.1 Constant Current (CC) Charging Approach -- 4.4.2.2 Constant Voltage (CV) Charging Approach -- 4.4.2.3 Constant Current-Constant Voltage (CC-CV) Charging Approach -- 4.4.2.4 Multi-Stage Constant Current (MCC) Approach -- 4.5 Conclusion -- References -- Chapter 5 Electric Vehicle and Design Using MATLAB -- List of Abbreviations -- 5.1 Introduction -- 5.2 Motivation -- 5.2.1 History of EVs -- 5.3 Basic Fundamentals of EVs -- 5.4 Why Electric Vehicles? -- 5.5 Comparison Between ICV and EV -- 5.6 Classification of EVs -- 5.7 Design and Structure of EV -- 5.7.1 HEV -- 5.7.2 FCEV -- 5.7.3 PHEV -- 5.7.4 Basic Design of EV -- 5.8 Mathematical Model of an Electric Vehicle -- 5.9 Control Strategy of EVs -- 5.10 Design Methodology for Electric Vehicles (EVs).
5.11 Latest Emerging Technology in EV -- 5.12 Performance Valuation of BLDC Motor and Induction Motor for Electric Vehicle Propulsion Application -- 5.12.1 A Mathematical Model for a Brushless DC (BLDC) Motor-Driven Electric Vehicle -- 5.12.2 Induction Motor -- 5.12.3 Mathematical Model for an Induction Motor-Driven Electric Vehicle -- 5.12.4 Induction Motor Design with Their Specifications -- 5.13 Conclusion -- References -- Chapter 6 Model Order Reduction of Battery for Smart Battery Management System -- 6.1 Introduction -- 6.2 Problem Formulation -- 6.3 Modeling of Battery -- 6.4 Methodology for Model Order Reduction -- 6.5 Result and Discussion -- 6.6 Conclusion -- Appendix -- References -- Chapter 7 Power Electronic Converters for Electric Vehicle Application -- 7.1 Introduction -- 7.2 Types of Electrical Vehicle and Role of Power Electronic Converter -- 7.2.1 Battery Electric Vehicles (BEVs) -- 7.2.1.1 Power Electronics in BEVs -- 7.2.2 Plug-In Hybrid Electric Vehicles (Plug-In HEVs) -- 7.2.2.1 Power Electronics in Plug-In Hybrid Electric Vehicles (Plug-In HEV) -- 7.2.3 Hybrid Electric Vehicles (HEVs) -- 7.2.3.1 Series Hybrid Electric Vehicles (SHEVs) -- 7.2.3.2 Parallel Hybrid Electric Vehicles (PHEVs) -- 7.2.3.3 Series-Parallel Hybrid Electric Vehicles (SPHEVs) -- 7.2.3.4 Power Electronics in Hybrid Electric Vehicles (HEVs) -- 7.2.4 Fuel Cell Electric Vehicles (FCEVs) -- 7.2.4.1 Power Electronics in Fuel Cell Electric Vehicles (FCEVs) -- 7.2.5 Solar Cell Electric Vehicles (SCEVs) -- 7.2.5.1 Power Electronics in Solar Cell Electric Vehicles (SCEVs) -- 7.3 Recent Development in Power Electronic Converter -- 7.4 Power Electronic Converters in Electric, Hybrid, and Fuel Cell Vehicles -- 7.4.1 Power Electronic Converters in EVs -- 7.4.2 Categorization of Power Electronic Converters -- 7.5 Challenges in Power Electronic Vehicular System.
7.5.1 Efficiency -- 7.5.2 Longevity -- 7.5.3 Performance of EV -- 7.5.4 Luxurious Features -- 7.5.5 Safety -- 7.5.6 Overall Cost -- 7.5.7 Noise -- 7.6 Conclusion -- References -- Chapter 8 Integrating Electric Vehicles Into Smart Grids Through Data Analytics: Challenges and Opportunities -- 8.1 Introduction -- 8.2 Smart Grid and Electric Vehicle -- 8.3 Impact of Electric Vehicle-Based Data Analytics for Smart Grids -- 8.4 Importance of Resource Availability, Price, and Load for EV -- 8.5 Electric-Tariff Design Based on Impact of Electric Vehicle Usage -- 8.6 Data Analytics for Electric Vehicles -- 8.7 Machine Learning for EV Analytics -- 8.8 What are the Different ML Algorithms Used by Authors for EV Analytics? -- 8.9 Importance of Data Analysis in the EV Industry Using an Open Source Data -- 8.10 Description of the Dataset -- 8.11 Features and Factors That Influence the Prices of EVs -- 8.12 Price Prediction of EVs -- 8.13 Random Forest-Based Price Prediction of Electric Vehicles -- 8.14 Machine Learning Model -- 8.15 Electric Vehicle Usage in India -- 8.16 The Challenges of Adopting EV in India -- 8.17 How to Increase Renewable Energy in India to Meet EV Demand -- Conclusion -- References -- Chapter 9 Hybrid Electrical Vehicle Designs -- 9.1 Introduction -- 9.2 Plug-In Hybrid Electric Vehicles -- 9.3 Classification of HEVs -- 9.3.1 Series Hybrid -- 9.3.2 Parallel Hybrid -- 9.3.3 Series-Parallel Hybrid -- 9.4 Fuel Cell Electric Vehicles (FCEVs) -- 9.4.1 Micro-Hybrids -- 9.4.2 Mild Hybrids -- 9.4.3 Full Hybrids -- 9.5 Hybrid Electric Vehicle System Design and Analysis -- 9.6 Control Strategy in Series Hybrid Drivetrain Configuration -- 9.6.1 Modes of Operation -- 9.6.2 Max. SoC-of-PPS Control Strategy -- 9.7 Design of Fuel Cell Electric Vehicles with Fuel Economy -- 9.7.1 Traction Mode -- 9.8 Conclusion -- References.
Chapter 10 EV Battery Charging System.
Sommario/riassunto: This book provides a comprehensive exploration of the development and design of electric vehicles (EVs) and fuel cell technologies. It covers topics such as braking systems, fuel cell types, smart energy management, and the integration of EVs into smart grids. The book also discusses the role of Internet of Things (IoT) in electric vehicle management, challenges in power electronics, and optimization algorithms for EV performance. It is intended for engineers, researchers, and professionals interested in the latest advancements in electric vehicle technology and design.
Titolo autorizzato: Electric vehicle design  Visualizza cluster
ISBN: 9781394205080
1394205082
9781394205097
1394205090
9781394205073
1394205074
9781394204373
139420437X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911020337603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui