Vai al contenuto principale della pagina
Autore: |
Kumar Arun
![]() |
Titolo: |
Smart Hospitals : 5G, 6G and Moving Beyond Connectivity
![]() |
Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
©2025 | |
Edizione: | 1st ed. |
Descrizione fisica: | 1 online resource (275 pages) |
Altri autori: |
GuptaManoj
![]() ![]() ![]() ![]() |
Nota di contenuto: | Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Chapter 1 Smart Hospitals: Integrating Connectivity and Intelligence -- 1.1 Introduction -- 1.1.1 Exploring the Concept of Smart Hospitals -- 1.1.2 Working of Smart Hospitals -- 1.2 Implementation of Smart Hospitals -- 1.2.1 Benefits of Smart Hospitals -- 1.2.1.1 Benefits of Implementing IoT in Healthcare -- 1.2.1.2 Benefits of Adopting 5G in Healthcare -- 1.2.2 Challenges of Smart Hospitals -- 1.2.3 Opportunities -- 1.3 Literature Review -- 1.4 Conclusion -- References -- Chapter 2 Evolution of 5G and 6G Cellular Systems -- 2.1 Introduction -- 2.2 Objectives of the Study -- 2.3 Scope and Significance -- 2.4 Basics of Cellular Technology -- 2.4.1 Overview of 1G to 4G -- 2.4.2 Key Features and Advancements -- 2.5 5G Technology -- 2.5.1 Introduction to 5G -- 2.5.2 Key Features and Components -- 2.5.3 Deployment Challenges -- 2.5.4 Use Cases and Applications -- 2.6 Towards 6G -- 2.6.1 Definition and Concept of 6G -- 2.6.2 Envisioned Applications and Use Cases -- 2.6.3 Key Technology Requirements -- 2.7 Technologies Enabling 6G -- 2.7.1 Artificial Intelligence and Machine Learning -- 2.7.2 Terahertz Communication -- 2.7.3 Quantum Communication -- 2.8 Challenges in 6G Developments -- 2.8.1 Technical Challenges -- 2.8.2 Regularity and Standardization Challenges -- 2.8.3 Security and Privacy Concerns -- 2.9 Future Prospects and Industry Impacts -- 2.9.1 Anticipated Benefits of 6G -- 2.9.2 Potential Disruptions in Industries -- 2.9.3 Economic and Social Implications -- 2.10 Comparative Analysis: 5G Versus 6G -- 2.10.1 Speed and Latency -- 2.10.2 Network Capacity -- 2.10.3 Energy Efficiency -- 2.10.4 User Experience -- 2.11 Main Contribution of 5G and 6G Evolution -- 2.12 Limitations of 5G and 6G Cellular System -- 2.12.1 Limitations of 5G. |
2.12.2 Potential Limitations of 6G (Anticipated) -- 2.13 Conclusion -- 2.13.1 Summary of Findings -- 2.13.2 Future Research Directions -- References -- Chapter 3 A Review on Augmented Reality and Virtual Reality Technologies in the Field of Healthcare -- Abbreviation -- 3.1 Introduction -- 3.2 Augmented Reality in Healthcare -- 3.2.1 Surgical Guidance -- 3.2.2 Enhancement of Decision-Making -- 3.2.3 Improved Collaboration and Training -- 3.2.4 Medical Diagnosis and Visualization -- 3.2.5 Remote Assistance and Collaboration -- 3.3 Virtual Reality in Healthcare -- 3.3.1 Medical Training and Education -- 3.3.2 Exposure Therapy -- 3.3.3 Painless Treatment -- 3.3.4 Physical Rehabilitation -- 3.4 Advantages of AR and VR in the Healthcare -- 3.4.1 Possible Remedies for Bridging the Gap -- 3.5 Challenges and Future Scope -- 3.6 Conclusion -- References -- Chapter 4 Compressed Sensing Reconstruction Algorithms for Medical Images - A Comparison -- 4.1 Introduction -- 4.2 Concept of Compressed Sensing Theory -- 4.3 Comprehensive Sensing Reconstruction Algorithms -- 4.4 Results and Discussion -- 4.5 Contribution of the Work -- 4.6 Limitations -- 4.7 Conclusion -- References -- Chapter 5 Internet of Medical Things (IoMT) -- 5.1 Introduction: Internet of Medical Things -- 5.1.1 Defining the IoMT -- 5.1.2 Development and Growth of IoMT Technologies -- 5.1.2.1 Early Beginnings of IoMT -- 5.1.2.2 Advancements in Sensor Technologies -- 5.1.2.3 Connectivity Solutions for IoMT -- 5.1.2.4 Data Analytics and AI in IoMT -- 5.2 Wearable Devices and Sensors for IoMT -- 5.2.1 Types of Wearable Devices -- 5.2.1.1 Smartwatches -- 5.2.1.2 Wristbands -- 5.2.1.3 Neckbands -- 5.2.1.4 Belts -- 5.2.1.5 Smart Clothing -- 5.2.1.6 Smart Rings -- 5.2.1.7 Smart Glasses -- 5.2.1.8 Smart Patches -- 5.2.1.9 Smart Earbuds -- 5.3 Challenges Faced in Customizing Wearable Devices. | |
5.4 Real-World Examples of IoMT Implementation -- 5.4.1 Remote Patient Monitoring (RPM) -- 5.4.2 Wearable Devices for Chronic Disease Management -- 5.4.3 Smart Hospitals and Healthcare Facilities -- 5.4.4 Telemedicine and Virtual Care -- 5.4.5 Clinical Trials and Research -- 5.5 Conclusions -- References -- Chapter 6 The Impact of 5G and 6G on Healthcare -- 6.1 Introduction: The Evolution of Wireless Connectivity: A Journey from 4G to 6G -- 6.1.1 4G Technology: The Foundation of Mobile Broadband -- 6.1.2 5G Technology: Unleashing the Power of Connectivity -- 6.1.3 6G Technology: Envisioning the Future Frontier -- 6.1.4 Revolutionizing Healthcare: Significance of 4G, 5G, and the Anticipated Impact of 6G -- 6.2 Telemedicine and Remote Patient Monitoring -- 6.3 IoT in Healthcare and Advanced Medical Imaging -- 6.4 Anticipated Impact of 6G in Healthcare -- 6.5 Current State of Healthcare Connectivity -- 6.5.1 Traditional Communication Methods -- 6.5.2 Electronic Health Records (EHR) and Health Information Exchange (HIE) -- 6.5.3 Telemedicine and Video Conferencing -- 6.5.4 Mobile Health (mHealth) Apps and Wearables -- 6.5.5 Unified Communication Platforms -- 6.5.6 Challenges and Future Trends -- 6.6 Limitations and Hurdles in Current Healthcare Communication Systems -- 6.6.1 Interoperability Issues -- 6.6.2 Security and Privacy Concerns -- 6.6.3 Fragmented Communication Channels -- 6.6.4 Resistance to Technology Adoption -- 6.6.5 Limited Patient Engagement -- 6.6.6 Inadequate Infrastructure and Connectivity -- 6.7 Impact of 5G on Healthcare -- 6.7.1 Enhanced Telemedicine and Remote Care -- 6.7.2 Precision Medicine and Personalized Care -- 6.8 The 6G Horizon: Unveiling the Potential Frontiers of Advanced Connectivity -- 6.9 Terahertz-Frequency Communication -- 6.10 Ultra-Reliable, Low-Latency Communication (URLLC) -- 6.11 Holographic Communication. | |
6.12 Advanced Artificial Intelligence Integration -- 6.13 Massive Device Connectivity -- 6.14 Environmental and Energy Efficiency -- 6.15 Designing an Antenna for Healthcare Applications -- 6.16 Conclusion -- References -- Chapter 7 Design and Fabrication of Vehicle Automation Systems -- Nomenclatures -- 7.1 Introduction -- 7.2 Related Work -- 7.2.1 Innovation in Autonomous Vehicles -- 7.3 Design of the Project -- 7.3.1 Arduino Uno -- 7.3.2 Ultrasonic Sensor -- 7.3.3 Motor Driver Shield -- 7.3.4 Servo Motor -- 7.3.5 Battery -- 7.3.6 Switch -- 7.3.7 DC Motors -- 7.4 Fabrication -- 7.4.1 Algorithm -- 7.5 Conclusion -- 7.5.1 Implementation -- 7.6 Future Scope -- References -- Chapter 8 Design and Optimization of Antennas with Improved ON-OFF Body Performance for Biomedical Applications -- 8.1 Introduction -- 8.2 Literature Review -- 8.3 Antenna Design -- 8.3.1 Antenna Without Phantom Model -- 8.3.1.1 Parametric Analysis -- 8.3.1.2 Stack Diagram -- 8.3.1.3 Results Scattering Parameters (S-Parameters) -- 8.3.1.4 Voltage Standing Wave Ratio (VSWR) -- 8.3.1.5 Radiation Pattern -- 8.3.2 Antenna with Implantable Phantom Model -- 8.3.2.1 Parametric List of the Phantom Model -- 8.3.2.2 Results S-Parameters -- 8.3.2.3 VSWR -- 8.3.2.4 Radiation Pattern -- 8.3.2.5 Specific Absorption Rate (SAR) -- 8.3.3 Antenna with a Wearable Phantom Model -- 8.3.3.1 Results S-Parameters -- 8.3.3.2 VSWR -- 8.3.3.3 Radiation Pattern -- 8.3.3.4 SAR -- 8.3.4 Antenna Placed 10mm Away from the Phantom Model -- 8.3.4.1 Result S-Parameters -- 8.3.4.2 VSWR -- 8.3.4.3 Radiation Pattern -- 8.3.4.4 SAR -- 8.3.5 Antenna Placed 15mm Away from Phantom Model -- 8.3.5.1 Results S-Parameters -- 8.3.5.2 VSWR -- 8.3.5.3 Radiation Pattern -- 8.3.5.4 SAR -- 8.4 Comparison Results -- 8.4.1 S-Parameters -- 8.4.2 Gain -- 8.4.3 SAR -- 8.5 Limitations -- 8.6 Conclusion -- References. | |
Chapter 9 Beyond 5G-Based Smart Hospitals: Integrating Connectivity and Intelligence -- 9.1 Introduction -- 9.2 Related Works -- 9.3 Methodology -- 9.4 6G-Enabled SHS Applications and Challenges -- 9.4.1 Applications -- 9.4.1.1 In-Body, On-Body, Off-Body Communications -- 9.4.1.2 Intelligent Nanoscale Inner Body Communications -- 9.4.1.3 Human Bond Communications -- 9.4.1.4 Visible Light Communication -- 9.4.2 Research Challenges -- 9.4.2.1 Security and Privacy -- 9.4.2.2 Data Sharing -- 9.4.2.3 Voluminous Data -- 9.4.2.4 High Power Consumption -- 9.4.2.5 Lack of Standardization -- 9.4.2.6 Computationally Expensive -- 9.4.2.7 Ownership of Data and Ethical Considerations -- 9.5 Future Research Directions and Recommendations -- 9.5.1 Future Directions -- 9.5.2 Recommendations -- 9.6 Conclusions -- References -- Chapter 10 Patient Monitoring Using 5G, with MIMO-NOMA for mm-Wave Communications in Heterogeneous Networks -- 10.1 Introduction -- 10.2 Related Works -- 10.3 NOMA Architecture -- 10.4 Power Allocation to the 5G-Enabled NOMA Users and Hospital -- 10.5 NOMA-MIMO System -- 10.6 Results and Discussion -- 10.6.1 BER Analysis of Number of Users -- 10.6.2 Outage Probability Using NOMA Power Allocation -- 10.6.3 Power Consumption Between NOMA and OMA Users -- 10.7 Conclusion and Future Scope -- References -- Chapter 11 A Review on the Internet of Medical Things -- 11.1 Introduction -- 11.1.1 Definition -- 11.2 Architecture of IoMT -- 11.2.1 The Role of IoMT in Healthcare -- 11.2.1.1 Data-Driven Decisions -- 11.2.1.2 Smart Medical Devices -- 11.2.1.3 Efficient Processes -- 11.2.1.4 Global Assistance -- 11.2.2 Types of IoMT Devices -- 11.2.2.1 On-Body Segment -- 11.2.2.2 In-Home Segment -- 11.2.2.3 Community Segment -- 11.2.2.4 In-Hospital Segment -- 11.3 IoMT - Applications, Benefits and Challenges -- 11.3.1 Applications of IoMT. | |
11.3.1.1 The Sensor Patch Detects Blood Leakage During Hemodialysis. | |
Titolo autorizzato: | Smart Hospitals ![]() |
ISBN: | 1-394-27547-1 |
1-394-27545-5 | |
1-394-27546-3 | |
Formato: | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910902899903321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |