Vai al contenuto principale della pagina
Autore: | Arya Raj K |
Titolo: | Functional Coatings for Biomedical, Energy, and Environmental Applications |
Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
©2025 | |
Edizione: | 1st ed. |
Descrizione fisica: | 1 online resource (739 pages) |
Altri autori: | VerrosGeorge D DavimJ. Paulo |
Nota di contenuto: | Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Introduction: The Evolution of Functional Coatings from Protection to Innovation -- 1.1 Introduction -- 1.1.1 Coatings in Biomedical Engineering -- 1.1.1.1 The Role of Coatings in Tissue Engineering and Surgical Applications -- 1.1.1.2 Application of Smart Coatings in Biomedical Engineering -- 1.1.1.3 Nano Coatings for Biomedical Engineering -- 1.2 Coatings in Energy Sector -- 1.2.1 Coatings Applications in Solar Energy and Green Buildings -- 1.2.2 Coatings in Energy Storage -- 1.2.3 Coatings in Hydrogen Technology -- 1.3 Coatings in the Environment: Agriculture, Food and Separations -- 1.3.1 Coatings in Agriculture -- 1.3.2 Food Coatings -- 1.3.2.1 Evolution of Polymer Coatings in the Food Industry -- 1.3.2.2 Advancements in Paper Coatings for Food Packaging -- 1.3.2.3 Innovations in Edible Coatings for Sustainable Food Packaging -- 1.3.2.4 Utilization of By- products of the Food Industry for Sustainable Coatings -- 1.3.2.5 The Intersection of Nanotechnology and Smart Food Coatings -- 1.3.3 Coatings in Separation and Environmental Applications -- 1.3.3.1 Water Purification, Wastewater Treatment, and Coatings -- 1.3.3.2 The Role of Membranes and Coatings in Gas Separations -- 1.3.3.3 The Application of Nanomaterials in Membranes and Coatings for Separation Processes -- 1.4 Other Applications of Coatings -- 1.4.1 Coatings in Cosmetics and Personal Hygiene -- 1.4.2 Application of Coatings in the Transportation Industry -- 1.4.3 Diverse Applications of Coatings in Various Industries -- 1.5 Conclusions -- References -- Part I Coatings in Biomedical Applications -- Chapter 2 Functional Coatings: Innovation and Challenges -- Coatings in Biological Systems -- 2.1 Introduction -- 2.2 Thermal Sprays Technologies -- 2.3 Plasma Spraying. |
2.4 Combustion Spraying -- 2.5 The Cold Spray Technology -- 2.6 Substrate Preparation -- 2.7 Characteristics of the Cold Spray Process -- 2.8 Cold- Sprayed Compounds -- 2.9 Cold Sprays Coatings with Added Functionality -- 2.10 Medical Implantable Device Coatings -- 2.11 Bioactive Coatings -- 2.12 Antimicrobial Coatings -- 2.12.1 Contamination of Medical Equipment -- 2.13 Antifouling Coatings -- 2.14 Anticorrosive Coatings -- 2.15 Cold Spray Bioactive Coatings in the Future -- 2.16 Conclusion -- References -- Chapter 3 Antimicrobial Coatings in Dental Implants: Past and Present Approaches -- 3.1 Introduction -- 3.1.1 Overview of Infections in Dental Implant -- 3.1.2 The Rationale for Antimicrobial Coating -- 3.2 Past and Present Status of AMC -- 3.2.1 Antimicrobial Polymer Coatings -- 3.2.2 Nanoparticles and Nanocomposites- Based AMC -- 3.2.3 Metals- Based AMC -- 3.2.4 Peptides- Based AMC -- 3.2.5 Other AMC Types -- 3.3 Challenges and Future of Antimicrobial- Coated Dental Implants -- 3.4 Conclusion -- References -- Chapter 4 Superhydrophobic Coatings for Biomedical and Pharmaceutical Applications -- 4.1 Introduction to Functional Coatings -- 4.2 Superhydrophobic Coatings -- 4.2.1 Background and Mechanism -- 4.2.2 Methods of Fabrication -- 4.2.2.1 Spraying Method -- 4.2.2.2 Etching Method -- 4.2.2.3 Template Method -- 4.3 Emerging Applications of Superhydrophobic Materials in Pharmaceutical and Biomedical -- 4.3.1 Medical Implant Materials In Vivo -- 4.3.2 Medical Auxiliary Materials In Vitro -- 4.3.3 Diagnostic Applications -- 4.3.4 Drug Delivery -- 4.3.5 Coatings for Pharmaceutical Applications -- 4.4 Conclusions, Perspectives, and Future Directions -- 4.5 Outlook -- Abbreviations -- References -- Chapter 5 Antimicrobial Coatings: Recent Advances and Development in Healthcare Systems -- 5.1 Introduction. | |
5.2 Antimicrobial Coating Technology (AMC Technology) -- 5.2.1 Materials Used in Antimicrobial Coatings -- 5.2.2 Methods to Make an Antimicrobial Surface -- 5.2.3 Mechanism of Action of Antimicrobial Coatings -- 5.2.3.1 Anti- adhesive Action -- 5.2.3.2 Contact- Active Action -- 5.2.3.3 Release of Substances -- 5.2.3.4 Photocatalytic Action -- 5.2.3.5 Photodynamic Action -- 5.2.4 Testing the Efficacy of the AMC -- 5.3 Antimicrobial Coatings Market Size, Share, and Industrial Analysis -- 5.4 Antimicrobial Technology in Healthcare Systems -- 5.5 Benefits of Antimicrobial Coatings in the Medical Industry -- 5.5.1 Reduction of Healthcare- Associated Infections -- 5.5.2 Increased Durability of Medical Devices -- 5.5.3 Improved Patient Safety -- 5.5.4 Increased Safety for Healthcare Workers -- 5.5.5 Cost- Effectiveness -- 5.5.6 Long- Lasting Protection -- 5.6 Challenges of Implementing Antimicrobial Coatings -- 5.6.1 Cost -- 5.6.2 Regulatory Compliance -- 5.6.3 Environmental Impact -- 5.6.4 Human Welfare and Aquatic Life -- 5.6.5 Ecology -- 5.6.6 Bacterial Resistance -- 5.6.7 Efficacy and Durability of Antimicrobial Coatings -- 5.6.8 Contamination to Medical Systems -- 5.6.9 Versatility -- 5.6.10 Broad Spectrum Coverage -- 5.6.11 Long- Term Antibacterial Activity -- 5.6.12 Leaching -- 5.7 Conclusion and Future Perspective -- References -- Chapter 6 3D Printing Coatings for Pharmaceutical Applications -- 6.1 Introduction -- 6.2 History -- 6.3 Advantages of a 3D Printed Drug Delivery -- 6.4 Process Challenges -- 6.5 Risk Assessment during 3D Printing Process -- 6.6 Types of 3D Printing -- 6.6.1 Selective Laser Sintering -- 6.6.2 Fused Deposition Modeling -- 6.6.3 Inkjet Printing -- 6.6.4 Stereolithography -- 6.6.5 Hot Melt Extrusion -- 6.6.6 Extrusion 3D Printing -- 6.7 Applications of 3D Printing. | |
6.7.1 3D Printing: Pharmaceutical Applications of Selective Laser Sintering -- 6.7.1.1 Applications of Selective Laser Sintering in Personalized Medicine -- 6.7.1.2 Orally Disintegrating Printlets -- 6.7.1.3 Dose Combinations -- 6.7.1.4 Controlled- Release Printlets -- 6.7.1.5 Treatment Compliance -- 6.7.2 3D Printing: Pharmaceutical Applications of Fused Deposition Modeling in Drug -- 6.7.2.1 Delivery System -- 6.7.2.2 3D Printing FDM Applications on Drug Delivery Systems -- 6.7.2.3 3D Printed FDM Applications on Tablets -- 6.7.2.4 3D Printed FDM Applications in Caplets -- 6.7.2.5 Recent Innovations in Fused Deposition Modeling -- 6.7.2.6 FDM for Drug- Loaded Cardiovascular Prosthesis Design -- 6.7.2.7 Haptic Evaluation of Braille- Encoded 3D- Printed Intraoral Films -- 6.7.3 Applications in Fabricating Personalized Medicine -- 6.7.4 Inkjet Printing -- 6.7.5 Extrusion 3D Printing -- 6.7.5.1 Semisolid Extrusion -- 6.7.5.2 Direct Powder Extrusion -- 6.7.6 Applications of 3D Printing -- 6.7.6.1 Bioprinting Tissues and Organs -- 6.7.6.2 Customized Implants and Prostheses -- 6.7.6.3 Anatomical Models -- 6.7.7 Stereolithography -- 6.7.8 Application of 3DP Technology to Pharmaceutical Dosage Form -- 6.7.8.1 Tablets -- 6.7.8.2 Implants -- 6.7.8.3 Microneedles -- References -- Chapter 7 Advances in Pharmaceutical Coatings and Coating Materials -- 7.1 Introduction -- 7.1.1 Historical Background of Coating in the Pharmaceutical Application -- 7.1.2 Scope of Pharmaceutical Coating -- 7.2 Coating Materials -- 7.2.1 Colorants and Opacifiers -- 7.2.2 Additives and Anti- additive -- 7.2.3 Plasticizers -- 7.2.4 Surfactant -- 7.2.5 Polymers -- 7.3 Different Types of Coating -- 7.3.1 Solvent- Based Coating -- 7.3.1.1 Film Coating -- 7.3.1.2 Sugar Coating -- 7.3.1.3 Gelatin Coating -- 7.3.1.4 Enteric Coating -- 7.3.1.5 Aqueous Film Coating -- 7.3.1.6 Organic Coating. | |
7.3.2 Solvent- Free Coating -- 7.3.2.1 Compression Coating -- 7.3.2.2 Electrostatic Coating -- 7.3.2.3 Dip Coating -- 7.3.2.4 Vacuum Film Coating -- 7.4 Coating Equipment -- 7.4.1 Standard and Modified Coating Pans -- 7.4.2 Fluidized- Bed Coating -- 7.5 Characterization Technique for the Coated Surface -- 7.5.1 Water Vapor Permeability -- 7.5.2 Oxygen Permeability -- 7.5.3 Thermal Characteristics -- 7.5.3.1 Glass Transition Temperature (Tg) -- 7.5.3.2 Thermogravimetric Analysis -- 7.5.4 Mechanical Characteristics -- 7.5.5 Adhesive Characteristics -- 7.6 Challenges of Coating in Pharmaceutical Application -- 7.7 Application of Process Modeling in Coating -- 7.8 Summary -- References -- Chapter 8 Pharmaceutical Coatings -- 8.1 Introduction -- 8.2 Biopharmaceutics -- 8.2.1 Absorption, Distribution, Metabolism, and Excretion (ADME) -- 8.2.2 Intravenous vs. Solid Oral Dosages -- 8.2.3 Release Profiles of Solid Oral Dosages -- 8.2.3.1 Immediate- Release Formulations -- 8.2.3.2 Modified- Release Formulations -- 8.3 Evaluation of Pharmaceutical Coatings and Process -- 8.3.1 Components in Pharmaceutical Coatings -- 8.3.2 Nonfunctional Film- Forming Polymers -- 8.3.3 Functional Film- Forming Polymers -- 8.3.4 Plasticizers -- 8.3.5 Colorants -- 8.4 Manufacturing Process for Applying Coatings -- 8.4.1 Tablet Film- Coating Process -- 8.4.2 Other Coating Processes -- 8.4.3 Equipment and Process Development Considerations -- 8.4.4 Coating Process Parameters -- 8.4.4.1 Batch Size and Coating Pan Volume -- 8.4.4.2 Atomizing Air Pressure -- 8.4.4.3 Spray Rate -- 8.4.4.4 Gun- to- Bed Distance (G- to- B Distance) -- 8.4.4.5 Inlet and Outlet Air Temperatures -- 8.4.4.6 Pan Speed -- 8.4.4.7 Quality of Uncoated Tablets -- 8.4.5 Process Monitoring -- 8.5 Scale- Up -- 8.5.1 Familiarization with Machines and Their Operating Principles. | |
8.5.2 Anticipating Differences in Equipment Design. | |
Titolo autorizzato: | Functional Coatings for Biomedical, Energy, and Environmental Applications |
ISBN: | 1-394-26317-1 |
1-394-26315-5 | |
1-394-26316-3 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910897546803321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |