Vai al contenuto principale della pagina

Tropospheric and ionospheric effects on global navigation satellite systems / / Timothy H. Kindervatter, Fernando L. Teixeira



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kindervatter Tim H. Visualizza persona
Titolo: Tropospheric and ionospheric effects on global navigation satellite systems / / Timothy H. Kindervatter, Fernando L. Teixeira Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : Wiley-IEEE Press, , [2022]
©2022
Descrizione fisica: 1 online resource (531 pages)
Disciplina: 910.285
Soggetto topico: Global Positioning System
Ionosphere
Troposphere
Persona (resp. second.): TeixeiraFernando L <1969-> (Fernando Lisboa)
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Overview of the Global Positioning System -- 1.1 Introduction -- 1.2 Applications of GNSS -- 1.2.1 Applications of Standard GNSS Positioning -- 1.2.2 Applications of Centimeter and Millimeter‐Level Positioning Accuracy -- 1.2.3 Applications of GNSS Timing Information -- 1.3 GPS Segments -- 1.3.1 Space Segment -- 1.3.2 Control Segment -- 1.3.3 User Segment -- 1.4 Keplerian Orbits -- 1.4.1 Shape of Orbit -- 1.4.2 Vernal Point -- 1.4.3 Kepler Elements -- 1.5 Satellite Broadcast -- 1.5.1 Carrier Frequencies -- 1.5.2 Digital Modulation -- 1.5.3 Ranging Codes -- 1.5.4 Navigation Message -- Chapter 2 Principles of GNSS Positioning -- 2.1 Introduction -- 2.2 Basic GNSS Observables -- 2.2.1 Pseudorange -- 2.2.2 Carrier Phase -- 2.2.3 Doppler Shift -- 2.3 GNSS Error Sources -- 2.3.1 Clock and Ephemeris Errors -- 2.3.2 Relativistic Effects -- 2.3.3 Carrier Phase Wind‐Up -- 2.3.4 Atmospheric Effects -- 2.3.5 Multipath, Diffraction, and Interference Effects -- 2.3.6 Hardware‐Related Errors -- 2.3.7 Dilution of Precision -- 2.3.8 Additional Error Sources -- 2.4 Point Positioning -- 2.4.1 Positioning Using Pseudorange -- 2.4.2 Accounting for Random Error -- 2.4.3 Further Considerations on Dilution of Precision -- 2.5 Data Combinations and Relative Positioning -- 2.5.1 Multi‐Frequency Combinations -- 2.5.2 Relative Positioning -- Chapter 3 Tropospheric Propagation -- 3.1 Introduction -- 3.2 Tropospheric Group Delay -- 3.2.1 Mapping Functions -- 3.3 Tropospheric Refraction -- 3.4 Extinction -- 3.4.1 Beer-Lambert Law -- 3.4.2 Scattering -- 3.4.3 Gaseous Absorption -- 3.4.4 Hydrometeor Attenuation -- 3.5 Tropospheric Scintillations -- Chapter 4 Predictive Models of the Troposphere -- 4.1 Introduction -- 4.2 Saastamoinen Model -- 4.2.1 First Integral -- 4.2.2 Second Integral.
4.2.3 Putting Everything Together -- 4.3 Hopfield Model -- 4.4 U.S. Standard Atmosphere -- 4.4.1 Model Assumptions -- 4.4.2 Computational Equations -- 4.4.3 Data Sources and Implementation -- Chapter 5 Physics of the Ionosphere -- 5.1 Introduction -- 5.2 Solar‐Terrestrial Relations -- 5.2.1 The Sun -- 5.2.2 The Interplanetary Medium -- 5.2.3 Earth's Magnetic Field -- 5.2.4 The Magnetosphere -- 5.2.5 Earth's Atmosphere -- 5.3 Physics of Ionization -- 5.3.1 Neutral Atmosphere -- 5.3.2 Ionization -- 5.3.3 Recombination and Attachment -- 5.3.4 Photochemical Processes in the Ionosphere -- 5.4 Chapman's Theory of Ionospheric Layer Formation -- 5.5 Plasma Transport -- 5.5.1 Diffusion -- 5.5.2 Neutral Winds -- 5.5.3 Electromagnetic Drift -- 5.5.4 Combined Effects of Neutral Wind and Electromagnetic Drift -- 5.5.5 Continuity Equation -- Chapter 6 Experimental Observation of the Ionosphere -- 6.1 Introduction -- 6.2 Ionospheric Measurement Techniques -- 6.2.1 Ionosondes -- 6.2.2 Incoherent Scatter Radar -- 6.2.3 In Situ Measurements -- 6.3 Morphology of the Ionosphere -- 6.3.1 C Layer -- 6.3.2 D Layer -- 6.3.3 E Layer -- 6.3.4 Sporadic E Layer -- 6.3.5 F1 Layer -- 6.3.6 F2 Layer -- 6.3.7 Topside Ionosphere -- 6.4 Variability of the Ionosphere -- 6.4.1 F2 Layer Anomalies -- 6.4.2 Solar Activity -- 6.4.3 Magnetic Variation -- 6.4.4 Ionospheric Irregularities -- Chapter 7 Ionospheric Propagation -- 7.1 Introduction -- 7.2 Magnetoionic Propagation -- 7.2.1 Simplifications of the Appleton-Hartree Equation -- 7.3 Propagation Effects of the Background Ionosphere -- 7.3.1 Total Electron Content -- 7.3.2 Ionospheric Refraction -- 7.3.3 Group Delay and Phase Advance -- 7.3.4 Dispersion -- 7.3.5 Faraday Rotation -- 7.3.6 Absorption -- 7.4 Scintillations -- 7.4.1 Scale Size of Ionospheric Irregularities -- 7.4.2 Statistical Description of Scintillations.
7.4.3 Power Spectra of Scintillations -- Chapter 8 Predictive Models of the Ionosphere -- 8.1 Introduction -- 8.2 Group Delay Models for Single‐Frequency GNSS Receivers -- 8.2.1 Klobuchar Model -- 8.2.2 NeQuick -- 8.3 Global Ionospheric Scintillation Model -- 8.3.1 Ray Tracing in the Ionosphere -- 8.3.2 Multiple Phase Screen Method -- 8.4 International Reference Ionosphere -- 8.4.1 Data Sources, Inputs, and Outputs -- 8.4.2 Important Functions -- 8.4.3 Characteristic Heights and Electron Densities -- 8.4.4 Electron Density -- 8.4.5 Electron Temperature -- 8.4.6 Ion Temperature -- 8.4.7 Ion Composition -- 8.4.8 Additional Parameters -- Appendices -- Appendix A Review of Electromagnetics Concepts -- A.1 Electromagnetic Waves -- A.1.1 Maxwell's Equations and the Wave Equation -- A.1.2 Plane Wave Solutions -- A.1.3 Constraints Via Maxwell's Equations -- A.1.4 Poynting Vector -- A.2 Phase and Group Velocity -- A.2.1 Phase Velocity -- A.2.2 Modulated Signals and Group Velocity -- A.2.3 Group Index of Refraction -- A.2.4 Relationship Between Phase and Group Velocities -- A.3 Polarization -- A.3.1 Linear Polarization -- A.3.2 Circular Polarization -- A.3.3 Elliptical Polarization -- A.3.4 Jones Vectors and Decomposing Polarizations -- A.4 Derivation of Rayleigh Scattering -- A.4.1 Electric Potential of an Ideal Dipole -- A.4.2 Effective Dipole Moment of a Spherical Scattering Particle -- A.4.3 Re‐radiation by a Scattering Particle -- Appendix B Electromagnetic Properties of Media -- B.1 Introduction -- B.2 Dielectric Polarization -- B.2.1 Induced Dielectric Polarization -- B.2.2 Electric Susceptibility -- B.3 Lossy and Dispersive Media -- B.3.1 Absorption -- B.3.2 Dispersion -- B.3.3 Graphical Analysis -- B.3.4 Multiple Resonances -- B.4 Conducting Media -- B.4.1 Time‐Varying Conduction Current -- B.4.2 Propagation in Conducting Media.
B.4.3 Combined Effects of Dispersion and Conduction -- B.5 Kramers-Kronig Relations -- B.6 Anisotropic Media -- B.6.1 Dielectric Tensor Properties -- B.6.2 Wave Equation in Anisotropic Media -- B.6.3 Optical Axes -- B.6.4 Index Ellipsoid -- B.6.5 Phase and Group Velocity in Anisotropic Media -- B.6.6 Birefringence and Spatial Walk‐off in k Surfaces -- B.7 Gyrotropic Media -- B.7.1 Gyrotropic Susceptibility Tensor -- B.7.2 Propagation in Gyrotropic Media -- Bibliography -- Index -- EULA.
Sommario/riassunto: "This book provides an accessible introduction to all the important effects caused by the ionosphere and the troposphere on GNSS RF signals. The origin of each type of propagation effect is explained from a fundamental physical perspective. The major methods used for measurement, prediction, and mitigation of ionospheric and tropospheric effects on GNSS are discussed in detail. Later chapters also discuss the mechanisms which drive ionization and plasma transport in the ionosphere; propagation phenomena such as scattering, absorption, and scintillations; and the major predictive models used to predict ionospheric propagation effects."--
Titolo autorizzato: Tropospheric and ionospheric effects on global navigation satellite systems  Visualizza cluster
ISBN: 1-119-86306-6
1-119-86304-X
1-119-86305-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830771603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui