Vai al contenuto principale della pagina

Advanced mapping of environmental data [[electronic resource] ] : geostatistics, machine learning, and Bayesian maximum entropy / / edited by Mikhail Kanevski



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Advanced mapping of environmental data [[electronic resource] ] : geostatistics, machine learning, and Bayesian maximum entropy / / edited by Mikhail Kanevski Visualizza cluster
Pubblicazione: London, : ISTE
Hoboken, N.J., : Wiley, 2008
Descrizione fisica: 1 online resource (xiii, 313 p.) : ill
Disciplina: 550.1519542
Soggetto topico: Geology - Statistical methods
Machine learning
Bayesian statistical decision theory
Altri autori: KanevskiMikhail  
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Chapter 1. Advanced Mapping of Environmental Data: Introduction -- Chapter 2. Environmental Monitoring Network Characterization and Clustering -- Chapter 3. Geostatistics: Spatial Predictions and Simulations -- Chapter 4. Spatial Data Analysis and Mapping Using Machine Learning Algorithms -- Chapter 5. Advanced Mapping of Environmental Spatial Data: Case Studies -- Chapter 6. Bayesian Maximum Entropy – BME -- Index.
Sommario/riassunto: This book combines geostatistics and global mapping systems to present an up-to-the-minute study of environmental data. Featuring numerous case studies, the reference covers model dependent (geostatistics) and data driven (machine learning algorithms) analysis techniques such as risk mapping, conditional stochastic simulations, descriptions of spatial uncertainty and variability, artificial neural networks (ANN) for spatial data, Bayesian maximum entropy (BME), and more.
Titolo autorizzato: Advanced mapping of environmental data  Visualizza cluster
ISBN: 9780470611463 (e-book)
9781848210608 (hbk.)
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830444603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: ISTE.