Vai al contenuto principale della pagina

Modeling and Optimization of Optical Communication Networks / / edited by Chandra Singh [and three others]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Modeling and Optimization of Optical Communication Networks / / edited by Chandra Singh [and three others] Visualizza cluster
Pubblicazione: Hoboken, NJ : , : John Wiley & Sons, Inc., and Scrivener Publishing LLC, , [2023]
©2023
Edizione: First edition.
Descrizione fisica: 1 online resource (431 pages)
Disciplina: 781.34
Soggetto topico: Computer networks
Application software
Electrical engineering
Management information systems
Persona (resp. second.): SinghChandra
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Investigation on Optical Sensors for Heart Rate Monitoring -- 1.1 Introduction -- 1.2 Overview of PPG -- 1.2.1 PPG Waveform -- 1.2.2 Photoplethysmography Waveforms Based on the Origin of Optical Concern -- 1.2.3 Photoplethysmography's Early on and Modern Records -- 1.2.4 Building Blocks of Photoplethysmography -- 1.2.5 Protocol Measurement and Reproducibility -- 1.3 Clinical Application - Heart Rate Monitoring -- 1.4 Summary -- References -- Chapter 2 Adopting a Fusion Approach for Optical Amplification -- 2.1 Introduction -- 2.2 The Mechanism Involved -- 2.3 Types of Amplifier -- 2.3.1 Semiconductor Optical Amplifiers -- 2.3.1.1 Various Phases and Progress of SOA -- 2.3.2 Fiber Raman Amplifiers -- 2.3.3 Fiber Brillouin Amplifiers -- 2.3.4 Doped-Fiber Amplifiers -- 2.4 Hybrid Optical Amplifiers -- 2.4.1 EDFA and SOA Hybrid -- 2.4.2 EDFA and FRA Hybrid -- 2.4.3 RFA and SOA Hybrid -- 2.4.4 Combination of EYDWA as well as SOA -- 2.4.5 EDFA-EYCDFA Hybrid -- 2.4.6 TDFA Along with RFA Hybrid -- 2.4.7 EDFA and TDFA Hybrid -- 2.5 Applications -- 2.5.1 Telecom Infrastructure Optical Power Amplifier -- 2.6 Current Scenario -- 2.7 Discussion -- 2.8 Conclusions -- References -- Chapter 3 Optical Sensors -- 3.1 Introduction -- 3.2 Glass Fibers -- 3.3 Plastic Fibers -- 3.4 Optical Fiber Sensors Advantages Over Traditional Sensors -- 3.5 Fiber Optic Sensor Principles -- 3.6 Classification of Fiber Optic Sensors -- 3.6.1 Intrinsic Fiber Optic Sensor -- 3.6.2 Extrinsic Fiber Optic Sensor -- 3.6.3 Intensity-Modulated Sensors -- 3.6.3.1 Intensity Type Fiber Optic Sensor Using Evanescent Wave Coupling -- 3.6.3.2 Intensity Type Fiber Optic Sensor Using Microbend Sensor -- 3.6.4 Phase Modulated Fiber Optic Sensors -- 3.6.4.1 Fiber Optic Gyroscope -- 3.6.4.2 Fiber-Optic Current Sensor.
3.6.5 Polarization Modulated Fiber Optic Sensors -- 3.6.6 Physical Sensor -- 3.6.6.1 Temperature Sensors -- 3.6.6.2 Proximity Sensor -- 3.6.6.3 Depth/Pressure Sensor -- 3.6.7 Chemical Sensor -- 3.6.8 Bio-Medical Sensor -- 3.7 Optical Fiber Sensing Applications -- 3.7.1 Application in the Medicinal Field -- 3.7.2 Application in the Agriculture Field -- 3.7.3 Application in Civil Infrastructure -- 3.8 Conclusion -- References -- Chapter 4 Defective and Failure Sensor Detection and Removal in a Wireless Sensor Network -- 4.1 Introduction -- 4.2 Related Works -- 4.3 Proposed Detection and Elimination Approach -- 4.3.1 Scanning Algorithm for Cut Tracking (SCT) -- 4.3.2 Eliminate Faulty Sensor Algorithm (EFS) -- 4.4 Results and Discussion -- 4.5 Performance Evaluation -- 4.6 Conclusion -- References -- Chapter 5 Optical Fiber and Prime Optical Devices for Optical Communication -- 5.1 Introduction -- 5.2 Optic Fiber Systems Development -- 5.3 Optical Fiber Transmission Link -- 5.4 Optical Sources Suited for Optical Fiber Communication -- 5.5 LED as Optical Source -- 5.6 Laser as Light Source -- 5.7 Optical Fiber -- 5.8 Fiber Materials -- 5.9 Benefits of Optical Fiber -- 5.10 Drawbacks of Optical Fiber -- 5.11 Recent Advancements in Fiber Technology -- 5.12 Photodetector -- 5.13 Future of Optical Fiber Communication -- 5.14 Applications of Optical Fibers in the Industry -- 5.15 Conclusion -- References -- Chapter 6 Evaluation of Lower Layer Parameters in Body Area Networks -- 6.1 Introduction -- 6.2 Problem Definition -- 6.3 Baseline MAC in IEEE 802.15.6 -- 6.4 Ultra Wideband (UWB) PHY -- 6.5 Castalia -- 6.5.1 Features -- 6.6 Methodology -- 6.6.1 Simulation Method in Castalia -- 6.6.2 Hardware Methodology -- 6.7 Results and Discussion -- 6.8 Hardware Setup Using Bluetooth Module -- 6.9 Hardware Setup Using ESP 12-E -- 6.10 Conclusions -- References.
Chapter 7 Analyzing a Microstrip Antenna Sensor Design for Achieving Biocompatibity -- 7.1 Introduction -- 7.2 Designing of Biomedical Antenna -- 7.3 Sensing Device for Biomedical Application -- 7.4 Conclusion -- References -- Chapter 8 Photonic Crystal Based Routers for All Optical Communication Networks -- 8.1 Introduction -- 8.2 Photonic Crystals -- 8.2.1 1D Photonic Crystals -- 8.2.2 2D Photonic Crystals -- 8.2.3 3D Photonic Crystals -- 8.2.4 Photonic Bandgap -- 8.2.5 Applications -- 8.3 Routers -- 8.4 Micro Ring Resonators -- 8.5 Optical Routers -- 8.5.1 Routers Based on PCRR -- 8.5.2 N x N Router Structures -- 8.5.2.1 3 x 3 Router -- 8.5.2.2 4 x 4 Router -- 8.5.2.3 6 x 6 Router -- 8.5.3 Routers Based on PC Line Defect -- 8.6 Summary -- References -- Chapter 9 Fiber Optic Communication: Evolution, Technology, Recent Developments, and Future Trends -- 9.1 Introduction -- 9.2 Basic Principles -- 9.3 Future Trends in Fiber Optics Communication -- 9.4 Advantages -- 9.5 Conclusion -- References -- Chapter 10 Difficulties of Fiber Optic Setup and Maintenance in a Developing Nation -- 10.1 Introduction -- 10.2 Related Works -- 10.3 Fiber Optic Cable -- 10.3.1 Single-Mode Cable -- 10.3.2 Multimode Cable -- 10.3.2.1 Step-Index Multimode Fiber -- 10.3.2.2 Graded-Index Multimode Fiber -- 10.3.3 Deployed Fiber Optics Cable -- 10.4 Fiber Optics Cable Deployment Strategies -- 10.4.1 Aerial Installation -- 10.4.2 Underground Installation -- 10.4.2.1 Direct-Buried -- 10.4.2.2 Installation in Duct -- 10.5 Deployment of Fiber Optics Throughout the World -- 10.5.1 Fiber Optics Deployment in India -- 10.5.2 Submarine Fiber Optic in India -- 10.5.3 Installation of Fiber Optic Cable in the Inland -- 10.6 Fiber Deployment Challenges -- 10.6.1 Deploying Fiber has a Number of Technical Difficulties -- 10.6.2 Right of Way -- 10.6.3 Administrative Challenges.
10.6.4 Post-Fiber Deployment Management -- 10.6.5 Fiber Optic Cable Deployment and Management Standards and Best Practices -- 10.7 Conclusion -- References -- Chapter 11 Machine Learning-Enabled Flexible Optical Transport Networks -- 11.1 Introduction -- 11.2 Review of SDM-EON Physical Models -- 11.2.1 Optical Fibers for SDM-EON -- 11.2.2 Switching Techniques for SDM-EON -- 11.3 Review of SDM-EON Resource Assignment Techniques -- 11.4 Research Challenges in SDM-EONs -- 11.5 Conclusion -- References -- Chapter 12 Role of Wavelength Division Multiplexing in Optical Communication -- 12.1 Introduction -- 12.2 Modules of an Optical Communication System -- 12.2.1 How a Fiber Optic Communication Works? -- 12.2.2 Codes of Fiber Optic Communication System -- 12.2.2.1 Dense Light Source -- 12.2.2.2 Low Loss Optical Fiber -- 12.2.3 Photo Detectors -- 12.3 Wavelength-Division Multiplexing (WDM) -- 12.3.1 Transceivers - Transmitting Data as Light -- 12.3.2 Multiplexers Enhancing the Use of Fiber Channels -- 12.3.3 Categories of WDM -- 12.4 Modulation Formats in WDM Systems -- 12.4.1 Optical Modulator -- 12.4.1.1 Direct Modulation -- 12.4.1.2 External Modulation -- 12.4.2 Modulation Formats -- 12.4.2.1 Non Return to Zero (NRZ) -- 12.4.2.2 Return to Zero (RZ) -- 12.4.2.3 Chirped RZ (CRZ) -- 12.4.2.4 Carrier Suppressed RZ (CSRZ) -- 12.4.2.5 Differential Phase Shift Key (DPSK) -- 12.4.3 Uses of Wavelength Division Multiplexing -- References -- Chapter 13 Optical Ultra-Sensitive Nanoscale Biosensor Design for Water Analysis -- 13.1 Introduction -- 13.2 Related Work or Literature Survey -- 13.2.1 B. Cereus Spores' Study for Water Quality -- 13.2.2 History Use of Optical Property for Biosensing -- 13.2.3 Photonic Crystal -- 13.3 Tools and Techniques -- 13.3.1 Opti FDTD -- 13.3.2 EM Wave Equation -- 13.3.3 Optical Ring Resonator -- 13.3.4 Output Power Computation.
13.4 Proposed Design -- 13.4.1 Circular Resonator PHC Biosensor -- 13.4.2 Triangular Structure PHC Biosensor -- 13.5 Simulation -- 13.6 Result and Analysis -- 13.7 Conclusion and Future Scope -- References -- Chapter 14 A Study on Connected Cars-V2V Communication -- 14.1 Introduction -- 14.2 Literature Survey -- 14.3 Software Description -- 14.4 Methodology -- 14.5 Working -- 14.6 Advantages and Applications -- 14.7 Conclusion and Future Scope -- Future Scope -- References -- Chapter 15 Broadband Wireless Network Era in Wireless Communication - Routing Theory and Practices -- 15.1 Introduction -- 15.2 Outline of Broadband Wireless Networking -- 15.2.1 Type of Broadband Wireless Networks -- 15.2.1.1 Fixed Networks -- 15.2.1.2 The Broadband Mobile Wireless Networks -- 15.2.2 BWN Network Structure -- 15.2.3 Wireless Broadband Applications -- 15.2.4 Promising Approaches Beyond BWN -- 15.3 Routing Mechanisms -- 15.4 Security Issues and Mechanisms in BWN -- 15.4.1 DoS Attack -- 15.4.2 Distributed Flooding DoS -- 15.4.3 Rogue and Selfish Backbone Devices -- 15.4.4 Authorization Flooding on Backbone Devices -- 15.4.5 Node Deprivation Attack -- 15.5 Conclusion -- References -- Chapter 16 Recent Trends in Optical Communication, Challenges and Opportunities -- 16.1 Introduction -- 16.2 Optical Fiber Communication -- 16.3 Applications of Optical Communication -- 16.4 Various Sectors of Optical Communication -- 16.5 Conclusion -- References -- Chapter 17 Photonic Communication Systems and Networks -- 17.1 Introduction -- 17.2 History of LiFi -- 17.3 LiFi Standards -- 17.4 Related Work -- 17.5 Methodology -- 17.6 Proposed Model -- 17.7 Experiment and Results -- 17.8 Applications -- 17.9 Conclusion -- Acknowledgment -- References -- Chapter 18 RSA-Based Encryption Approach for Preserving Confidentiality Against Factorization Attacks -- 18.1 Introduction.
18.2 Related Work.
Titolo autorizzato: Modeling and Optimization of Optical Communication Networks  Visualizza cluster
ISBN: 1-119-83955-6
1-119-83956-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830253803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui