Vai al contenuto principale della pagina
Autore: | Mohammadi S (Soheil) |
Titolo: | Multiscale biomechanics : theory and applications / / Soheil Mohammadi |
Pubblicazione: | Hoboken, NJ : , : John Wiley & Sons Ltd., , [2023] |
©2023 | |
Descrizione fisica: | 1 online resource (557 pages) |
Disciplina: | 571.43 |
Soggetto topico: | Biomechanics |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Intro -- Multiscale Biomechanics -- Contents -- Preface -- List of Abbreviations -- Part I Introduction -- 1 Introduction -- 1.1 Introduction to Biomechanics -- 1.2 Biology and Biomechanics -- 1.3 Types of Biological Systems -- 1.3.1 Biosolids -- 1.3.2 Biofluids -- 1.3.3 Biomolecules -- 1.3.4 Synthesized Biosystems -- 1.4 Biomechanical Hierarchy -- 1.4.1 Organ Level -- 1.4.2 Tissue Level -- 1.4.3 Cellular and Lower Levels -- 1.4.4 Complex Medical Procedures -- 1.5 Multiscale/Multiphysics Analysis -- 1.6 Scope of the Book -- Part II Analytical and Numerical Bases -- 2 Theoretical Bases of Continuum Mechanics -- 2.1 Introduction -- 2.2 Solid Mechanics -- 2.2.1 Elasticity -- 2.2.2 Plasticity -- 2.2.3 Damage Mechanics -- 2.2.4 Fracture Mechanics -- 2.2.5 Viscoelasticity -- 2.2.6 Poroelasticity -- 2.2.7 Large Deformation -- 2.3 Flow, Convection and Diffusion -- 2.3.1 Thermodynamics -- 2.3.2 Fluid Mechanics -- 2.3.3 Gas Dynamics -- 2.3.4 Diffusion and Convection -- 2.4 Fluid-Structure Interaction -- 2.4.1 Lagrangian and Eulerian Descriptions -- 2.4.2 Fluid-Solid Interface Boundary Conditions -- 2.4.3 Governing Equations in the Eulerian Description -- 2.4.4 Coupled Lagrangian-Eulerian (CLE) -- 2.4.5 Coupled Lagrangian-Lagrangian (CLL) -- 2.4.6 Arbitrary Lagrangian-Eulerian (ALE) -- 3 Numerical Methods -- 3.1 Introduction -- 3.2 Finite Difference Method (FDM) -- 3.2.1 One-Dimensional FDM -- 3.2.2 Higher Order One-Dimensional FDM -- 3.2.3 FDM for Solving Partial Differential Equations -- 3.3 Finite Volume Method (FVM) -- 3.4 Finite Element Method (FEM) -- 3.4.1 Basics of FEM Interpolation -- 3.4.2 FEM Basis Functions/Shape Functions -- 3.4.3 Properties of the Finite Element Interpolation -- 3.4.4 Physical and Parametric Coordinate Systems -- 3.4.5 Main Types of Finite Elements -- 3.4.6 Governing Equations of the Boundary Value Problem. |
3.4.7 Numerical Integration -- 3.5 Extended Finite Element Method (XFEM) -- 3.5.1 A Review of XFEM Development -- 3.5.2 Partition of Unity -- 3.5.3 Enrichments -- 3.5.4 Signed Distance Function -- 3.5.5 XFEM Approximation for Cracked Elements -- 3.5.6 Boundary Value Problem for a Cracked Body -- 3.5.7 XFEM Discretisation of the Governing Equation -- 3.5.8 Numerical Integration -- 3.5.9 Selection of Enrichment Nodes for Crack Propagation -- 3.5.10 Incompatible Modes of XFEM Enrichments -- 3.5.11 The Level Set Method for Tracking Moving Boundaries -- 3.5.12 XFEM Tip Enrichments -- 3.5.13 XFEM Enrichment Formulation for Large Deformation Problems -- 3.6 Extended Isogeometric Analysis (XIGA) -- 3.6.1 Introduction -- 3.6.2 Isogeometric Analysis -- 3.6.3 Extended Isogeometric Analysis (XIGA) -- 3.6.4 XIGA Governing Equations -- 3.6.5 Numerical Integration -- 3.7 Meshless Methods -- 3.7.1 Why Going Meshless -- 3.7.2 Meshless Approximations -- 3.7.3 Meshless Solutions for the Boundary Value Problems -- 3.8 Variable Node Element (VNE) -- 4 Multiscale Methods -- 4.1 Introduction -- 4.2 Homogenization Methods -- 4.2.1 Introduction -- 4.2.2 Representative Volume Element (RVE) -- 4.2.3 Mathematical Homogenization -- 4.2.4 Computational Homogenization -- 4.3 Molecular Dynamics (MD) -- 4.3.1 Introduction -- 4.3.2 Statistical Mechanics -- 4.3.3 MD Equations of Motion -- 4.3.4 Models for Atomic Interactions - MD Potentials -- 4.3.5 Measures for Determining the State of MD Systems -- 4.3.6 Stress Computation in MD -- 4.3.7 Molecular Statics -- 4.3.8 Sample MD Simulation of a Polymer -- 4.4 Sequential Multiscale Method -- 4.4.1 Introduction -- 4.4.2 Multiscale Modelling of CNT Reinforced Concrete -- 4.4.3 Molecular Dynamics Simulation of CNTs -- 4.4.4 Simulation of CNT-Reinforced Calcium Silicate Hydrate -- 4.4.5 Micromechanical Simulation of CNT-Reinforced Cement. | |
4.4.6 Mesoscale Simulation of CNT-Reinforced Concrete -- 4.4.7 Macroscale Simulation of CNT-Reinforced Concrete -- 4.5 Concurrent Multiscale Methods -- 4.5.1 Introduction -- 4.5.2 Quasi-Continuum Method (QC) -- 4.5.3 Bridging Domain Method (BDM) -- 4.5.4 Bridging Scale Method (BSM) -- 4.5.5 Disordered Concurrent Multiscale Method (DCMM) -- 4.5.6 Variable Node Multiscale Method (VNMM) -- 4.5.7 Enriched Multiscale Method (EMM) -- Part III Biomechanical Simulations -- 5 Biomechanics of Soft Tissues -- 5.1 Introduction -- 5.2 Physiology of Soft Tissues -- 5.2.1 Soft Tissues, Skin -- 5.2.2 Artery -- 5.2.3 Heart Leaflet -- 5.2.4 Brain Tissue -- 5.3 Hyperelastic Models of Soft Tissues -- 5.3.1 Introduction -- 5.3.2 Description of Deformation and Definition of Invariants -- 5.3.3 Isotropic neo-Hookean Hyperelastic Model -- 5.3.4 Isotropic Mooney-Rivlin Hyperelastic Model -- 5.3.5 Hyperelastic Models for Multiscale Simulation of Tendon -- 5.3.6 Anisotropic Hyperelastic Models for Fibrous Tissues -- 5.3.7 Polyconvex Undamaged Functions for Fibrous Tissues -- 5.3.8 Damaged Soft Tissue -- 5.4 Multiscale Modelling of Undamaged Tendon -- 5.4.1 Fibril Scale -- 5.4.2 Fibre Scale -- 5.4.3 Tissue Scale -- 5.5 Multiscale Analysis of a Human Aortic Heart Valve -- 5.5.1 Introduction -- 5.5.2 Organ Scale Simulation -- 5.5.3 Simulation in the Tissue Scale -- 5.5.4 Cell Scale Analysis -- 5.6 Modelling of Ligament Damage -- 5.7 Modelling of the Peeling Test: Dissection of the Medial Tissue -- 5.8 Healing in Damaged Soft Tissue -- 5.8.1 Introduction -- 5.8.2 Physical Foundation of Tissue Healing -- 5.8.3 Solution Procedure -- 5.8.4 Numerical Analysis -- 5.9 Hierarchical Multiscale Modelling of a Degraded Arterial Wall -- 5.9.1 Definition of the Problem -- 5.9.2 Multiscale Model -- 5.9.3 Hyperelastic Material Models. | |
5.9.4 Computational Framework of the Hierarchical Multiscale Homogenization -- 5.9.5 Numerical Results -- 5.10 Multiscale Modelling of the Brain -- 5.10.1 Introduction -- 5.10.2 Biomechanics of the Brain -- 5.10.3 Multiscale Modelling of the Brain (neo-Hookean Model) -- 5.10.4 Viscoelastic Modelling of the Brain -- 6 Biomechanics of Hard Tissues -- 6.1 Introduction -- 6.1.1 Hard Tissues -- 6.1.2 Chemical Composition of Bone -- 6.1.3 Multiscale Structure of Bone -- 6.1.4 Bone Remodelling -- 6.1.5 Contents of the Chapter -- 6.2 Concepts of Fracture Analysis of Hard Tissues -- 6.2.1 Numerical Studies of Bone Fracture -- 6.2.2 Constitutive Response of the Bone -- 6.2.3 Poroelastic Nature of Bone Tissues -- 6.2.4 Plasticity and Damage -- 6.2.5 Hyperelastic Response -- 6.3 Simulation of the Femur Bone at Multiple Scales -- 6.3.1 Microscale Simulation of the Trabecular Bone -- 6.3.2 Two-dimensional XFEM Mesoscale Fracture Simulation of the Cortical Bone -- 6.3.3 Macroscale Simulation of the Femur -- 6.4 Healing in Damaged Hard Tissue -- 6.4.1 Introduction -- 6.4.2 Physical Foundation of Bone Tissue Healing -- 6.4.3 Solution Procedure -- 6.4.4 Numerical Analysis -- 7 Supplementary Topics -- 7.1 Introduction -- 7.2 Shape Memory Alloy (SMA) Stenting of an Artery -- 7.2.1 Stenting Procedures -- 7.2.2 SMA Constitutive Equations -- 7.2.3 Contact Mechanics -- 7.2.4 Modelling of Stenting -- 7.2.5 Basics of Modelling -- 7.3 Multiscale Modelling of the Eye -- 7.4 Pulsatile Blood Flow in the Aorta -- 7.4.1 Description of the Problem -- 7.5 Shape Memory Polymer Drug Delivery System -- 7.6 Artificial Intelligence in Biomechanics -- 7.6.1 Artificial Intelligence and Machine Learning -- 7.6.2 Deep Learning -- 7.6.3 Physics-Informed Neural Networks (PINNs) -- 7.6.4 Biomechanical Applications of Artificial Intelligence -- References -- Index -- EULA. | |
Titolo autorizzato: | Multiscale biomechanics |
ISBN: | 1-119-03373-X |
1-119-03371-3 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910830225803321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |