Vai al contenuto principale della pagina
Autore: | Bestvina Mladen <1959-> |
Titolo: | Characterizing k-dimensional universal Menger compacta / / Mladen Bestvina |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , 1988 |
©1988 | |
Descrizione fisica: | 1 online resource (121 p.) |
Disciplina: | 514/.3 |
Soggetto topico: | Metric spaces |
Manifolds (Mathematics) | |
Note generali: | "January 1988, volume 71, number 380 (second of 5 numbers)." |
Nota di bibliografia: | Includes bibliographical references. |
Nota di contenuto: | ""TABLE OF CONTENTS""; ""INTRODUCTION""; ""DEFINITIONS AND NOTATION""; ""1. PARTITIONS""; ""1.1. Partitions on Compact PL-Manifolds (With Boundary)""; ""1.2. The Standard Construction of the Universal k-Dimensional Menger Space Î?[sup(k)] and Î?[sup(k)]-Manifolds""; ""1.3. A Combinatorial Characterization of Î?[sup(k)]""; ""2. BASIC MOVES""; ""2.1. On LC[sup(k-1)]-Spaces and UV[sup(k-1)]-Maps""; ""2.2. The Isotopy Move and Verification of Axiom 1""; ""2.3. Absorbing Maps and Basic Properties of Î?[sup(k)]-Manifolds""; ""2.4. Building Partitions and Associated Maps"" |
""2.5. Connecting Intersections""""2.6. Correct Ordering""; ""2.7. Increasing the Connectivity of Partition Elements""; ""2.8 Some Easy Consequences""; ""3. THE Z-SET UNKNOTTING THEOREM""; ""3.1. The Z-set Unknotting Theorem""; ""3.2. Homogeneity of Î?[sup(k)]""; ""4. THE DECOMPOSITION THEORY OF MENGER MANIFOLDS""; ""4.1. The Z-set Shrinking Theorem""; ""4.2. The Ï?-Z-set Shrinking Theorem""; ""4.3. The Main Shrinking Theorem""; ""5. THE CHARACTERIZATION THEOREM""; ""5.1. The Resolution Theorem""; ""5.2. The Characterization Theorem""; ""6. NONCOMPACT MENGER MANIFOLDS""; ""APPENDIX"" | |
""LIST OF REFERENCES"" | |
Titolo autorizzato: | Characterizing k-dimensional universal Menger compacta |
ISBN: | 1-4704-0800-7 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910828912603321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |