Vai al contenuto principale della pagina
Titolo: | Lanthanum [[electronic resource] ] : compounds, production and applications / / Ryan J. Moore, editor |
Pubblicazione: | Hauppauge, N.Y., : Nova Science Publishers, c2010 |
Edizione: | 1st ed. |
Descrizione fisica: | 1 online resource (377 p.) |
Disciplina: | 665.8/1 |
Soggetto topico: | Lanthanum - Industrial applications |
Lanthanum compounds - Industrial applications | |
Altri autori: | MooreRyan J |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Intro -- LANTHANUM: COMPOUNDS, PRODUCTION AND APPLICATIONS -- LANTHANUM: COMPOUNDS, PRODUCTION AND APPLICATIONS -- LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA -- CONTENTS -- PREFACE -- Chapter 1 DOPED LANTHANUM SILICATES WITH THE APATITE STRUCTURE AS OXIDE-ION CONDUCTING ELECTROLYTES: SYNTHESIS, CHARACTERIZATION AND APPLICATION FOR DESIGN OF INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELL -- ABSTRACT -- 1. INTRODUCTION -- 2. METHODS OF SYNTHESIS AND CHARACTERIZATION -- 2.1. Synthesis Methods -- 2.1.1. Electrolytes: Doped Apatite-Type Lanthanum Silicates -- 2.1.2. Anode Materials -- 2.1.3. Cathode Materials -- 2.2. Characterization -- 3. SYNTHESIS AND CHARACTERISTICS OF DOPED APATITE-TYPE LANTHANUM SILICATE ELECTROLYTES -- 3.1. Apatite-Type Lanthanum Silicates Prepared via Mechanochemical Activation -- 3.1.1. Al-Doped ATLS -- 3.1.2. Fe-Doped ATLS -- 3.1.3. The Mechanism of the Apatite Formation -- 3.2. Pechini Method -- 3.3. Сharacteristics of Apatite-Type Lanthanum Silicate Electrolytes -- 3.3.1. Bulk Structure Characterization -- 3.3.2. Surface Composition Study -- 3.3.3. Transport Properties -- 4. ANODE MATERIALS -- 4.1. Methods of Synthesis and Characterization -- 4.2. Structural Characteristics of Anode Materials -- 4.3. Catalytic Activity in Methane Steam Reforming -- 4.3.1. The Unmodified Composite Anode Materials -- 4.3.2. Modified Composite Anode Materials -- 4.3.3. The Effect of the ATLS Dopant Nature -- 5. CATHODE MATERIALS -- 5.1. Methods of Synthesis and Characterization -- 5.2. Perovskites -- 5.2.1. Phase, Morphology and Structural Features of Perovskites -- 5.3.2. Surface Composition of Perovskites -- 5.3.3. Conductivity of Perovskites -- 5.3.3. Oxygen Mobility and Catalytic Properties of Perovskites -- 5.3. Perovskite-Apatite Composite -- 5.3.1. Structural Properties -- 5.3.2. Conductivity and Oxygen Mobility. |
6. HALF CELL PREPARATION BY MEANS OF ELETROPHORETIC DEPOSITION -- 6.1. Electrophoretic Deposition of Cathode Powders -- 6.2. Preparation of the Electrolyte Pellets -- 6.3. Preparation of Electrolyte Supported Half Cells -- 6.3.1. Cathode Half Cell. -- 6.4. Preparation of Anode Supported Half Cells -- 7. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 2 LANTHANUM-CONTAINING CATALYTIC MATERIALS AND THEIR APPLICATIONS IN HETEROGENEOUS CATALYSIS -- ABSTRACT -- INTRODUCTION -- DISCOVERING OF LANTHANUM AND ITS PHYSICOCHEM PROPERTIES -- LANTHANA AND LANTHANUM-CONTAINING COMPOSITE OXIDES -- Lanthanum Oxides -- Nano Lanthanum Oxide -- Mesoporous Lanthanum Oxide -- Modified Lanthanum Oxide -- Supported Lanthanum Oxide -- Lanthanum Oxide as Supports -- Lanthanum-Containing Composite Oxides -- Conventional Lanthanum-Containing Composite Oxides -- Nano Lanthanum-Containing Composite Oxides -- Mesoporous Lanthanum-Containing Composite Oxides -- Modified Lanthanum-Containing Composite Oxides -- LANTHANUM OXYSULFIDE, SULFIDE, AND OXYNITRIDE -- Lanthanum Oxysulfide -- Lanthanum Sulfide -- Lanthanum Oxynitride -- LANTHANUM USED AS ADDITIVES -- Lanthanum Modified Molecular Sieves -- Lanthanum Modified Microporous Molecular Sieves -- Lanthanum Modified Mesoporous Molecular Sieves -- Lanthanum Modified Clays -- Lanthanum as Additive for Support Catalysts -- Lanthanum Modified Solid Superacid Catalysts -- LANTHANUM-CONTAINING HETEROPOLY ACIDS/SALTS -- LANTHANUM SALTS AS CATALYSTS FOR HETEROGENEOUS CATALYSIS -- CONCLUDED REMARKS AND OUTLOOK -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 3 BIOMEDICAL APPLICATIONS OF LANTHANUM -- ABSTRACT -- LANTHANUM AS A TRACER FOR THE STUDY OF TIGHT JUNCTIONS -- Structure and Function of Tight Junctions -- Methods to Study the Permeability of Tight Junctions in Cell Cultures -- The lanthanum tracer method. | |
Transepithelial electrical resistance -- Hydrophilic permeability probes -- Hydrophilic permeability probes -- Brain and peripheral nervous system -- Eye -- Gastrointestinal tract -- Respiratory system -- Thymus -- Male reproductive organs -- Female reproductive organs -- Other tissues -- Lanthanum as an Inhibitor of Ion Channels -- UPTAKE OF LANTHANUM SALTS IN THE BODY -- Lanthanum Carbonate in the Treatment of Hyperphosphatemia in end Stage Renal Disease -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 4 THE PROMOTING EFFECT OF LANTHANUM IN HETEROGENEOUS CATALYSTS -- ABSTRACT -- 1. INTRODUCTION -- 2. APPLICATIONS OF LANTHANA AS CATALYSTS AND SUPPORTS -- 3. THE ROLE OF LANTHANUM AS PROMOTER IN HETEROGENEOUS CATALYSIS -- 3.1.The Stabilization of Combustion Catalysts with Lanthanum -- 3.2. The Role of Lanthanum In Improving the Catalysts for Hydrocarbons Reforming -- 3.3. The Doping of the Three-Way Catalysts with Lanthanum -- 3.4. The Action of Lanthanum on the Thermal Stability of Catalytic Membranes -- 3.5. The Addition of Lanthanum to Photocatalysts -- 3.6. Improvements of Catalysts for Ethylbenzene Dehydrogenation by Lanthanum -- 3.7. Other Uses of Lanthanum as Dopant in Heterogeneous Catalysis -- 4. CONCLUDING REMARKS -- REFERENCES -- Chapter 5 LANTHANUM STRONTIUM MANGANITES FOR APPLICATION AS CATHODES IN SOLID OXIDE FUEL CELLS -- ABSTRACT -- 1. INTRODUCTION -- 2. MATERIALS FOR SOFC -- 3. PEROVSKITES: STRUCTURE AND PROPERTIES -- 3.1. Structure of Perovskite Oxides -- 3.2. Electrical Properties -- 3.3. Thermal Stability -- 3.4. Chemical Reactivity with YSZ -- 4. SYNTHESIS METHODS OF PEROVSKITES -- 4.1. Solid-State Method -- 4.2. Combustion Method -- 4.3. Citrate Method -- 5. EXPERIMENTAL -- 5.1. LSM Synthesis -- 5.2. Characterization -- 6. RESULTS AND DISCUSSIONS -- 6.1. Solid-State Method -- 6.1.1. Thermal analysis -- 6.1.2. Phase formation. | |
6.1.3. Microstructure and porosity -- 6.2. Combustion Method -- 6.2.1. Thermal analysis -- 6.2.2. Phase formation -- 6.2.3. Microstructure and porosity -- 6.3. Citrate Method -- 6.3.1. Thermal analysis -- 6.3.2. Phase formation -- 6.3.3. Microstructure and porosity -- 6.4. Electrical Conductivity -- 7. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 6 LANTHANIDE DOPED BISMUTH TITANATE THIN FILMS: PROMISING RARE EARTH PHOTOLUMINESCENCE FERROELECTRIC MATERIALS -- ABSTRACT -- 1. INTRODUCTION -- 2. CRYSTAL STRUCTURE OF LANTHANIDE DOPED BISMUTH TITANATE THIN FILMS -- 3. ELECTRICAL PROPERTIES OF (BI, LN)4TI3O12 THIN FILMS -- 4. PHOTOLUMINESCENCE PROPERTIES OF (BI, LN)4TI3O12 THIN FILMS -- 4.1. (Bi, Eu)4Ti3O12 (BEuT) Luminescent Ferroelectric Thin Films -- 4.2. Nanocomposite Films Composed of Ferroelectric Bi3.6Eu0.4Ti3O12 Matrix and Highly C-Axis Oriented ZnO Nanorods -- 4.3. (Bi, Pr)4Ti3O12 (BPrT) Luminescent Ferroelectric Thin Films -- 4.4. (Bi, Er)4Ti3O12 (BErT) Luminescent Ferroelectric Thin Films -- 5. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 7 LANTHANUM HALIDE SCINTILLATORS FOR GAMMA SPECTROSCOPY -- INTRODUCTION -- SECTION 1: LACL3:CE AND LABR3:CE CRYSTALS -- SECTION 2. LACL3: CE AND LABR3:CE DETECTORS FOR GAMMA SPECTROSCOPY -- Section 2.1 Internal Activity -- Section 2.2. Radiation Hardness -- Section 2.3. Pulse Shape Discrimination -- Section 2.4. Time and Energy Resolution -- Section 2.5. Doppler and Imaging -- CONCLUSIONS -- REFERENCES -- Chapter 8 MAGNETIC INCOMMENSURABILITY AND FLUCTUATING CHARGE DENSITY WAVES IN LANTHANUM CUPRATES -- ABSTRACT -- 1. INTRODUCTION -- 2. MODELS AND METHODS -- 2.1. The t-J Model and Mori's Projection Operator Formalism -- 2.2. The Hubbard Model and the Strong-Coupling Diagram Technique -- 3. MAGNETIC INCOMMENSURABILITY -- 4. FLUCTUATING CHARGE DENSITY WAVES -- 5. CONCLUSION -- REFERENCES. | |
Chapter 9 LANTHANUM HEXABORIDE THIN FILMS IN PHOTO EMISSIVE AMBIENT AIR APPLICATIONS -- ABSTRACT -- INTRODUCTION -- REFERENCES -- Chapter 10 LANTHANUM-BASED OXIDES AS HIGH PERMITTIVITY GATE DIELECTRICS FOR NEXT GENERATION MOS DEVICES -- ABSTRACT -- 1. INTRODUCTION -- 1.1. Why Do We Need High-k? -- 1.2. What Are the Requirements for High-k Materials as Gate Dielectrics? -- 1.2.1. Enough high permittivity -- 1.2.2. Good thermal stability contact with silicon substrate -- 1.2.3. Good insulator with band offsets larger than 1ev with silicon to minimize carrier injection into its bands -- 1.3. Lanthanum-Based Oxides Are Promising Ones as High-K Gate Dielectrics -- 2. EFFECTS OF MOISTURE ABSORPTION ON THE PERMITTIVITY AND SURFACE ROUGHNESS OF LA2O3 FILM AS GATE DIELECTRIC -- 3. SUPPRESSION OF LEAKAGE CURRENT AND MOISTURE ABSORPTION OF LA2O3 FILMS WITH ULTRAVIOLET OZONE POST TREATMENT -- 4. HIGHER-K LAYOX FILMS WITH STRONG MOISTURE-ROBUSTNESS -- 5. CONCLUSION -- REFERENCES -- INDEX. | |
Titolo autorizzato: | Lanthanum |
ISBN: | 1-61728-333-9 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910825004403321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |