Vai al contenuto principale della pagina

Benefits of Bayesian network models / / Philippe Weber, Christophe Simon



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Weber Philippe Visualizza persona
Titolo: Benefits of Bayesian network models / / Philippe Weber, Christophe Simon Visualizza cluster
Pubblicazione: Hoboken, NJ : , : Wiley, , 2016
Descrizione fisica: 1 online resource (151 p.)
Disciplina: 519.5/42
Soggetto topico: Uncertainty (Information theory) - Mathematical models
Bayesian statistical decision theory
Computer software - Development
Persona (resp. second.): SimonChristophe
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover ; Title Page ; Copyright ; Contents; Foreword by J.-F. Aubry; Foreword by L. Portinale; Acknowledgments; Introduction; I.1. Problem statement; I.2. Book structure; PART 1. Bayesian Networks; 1. Bayesian Networks: a Modeling Formalism for System Dependability; 1.1. Probabilistic graphical models: BN; 1.1.1. BN: a formalism to model dependability; 1.1.2. Inference mechanism; 1.2. Reliability and joint probability distributions; 1.2.1. Multi-state system example; 1.2.2. Joint distribution; 1.2.3. Reliability computing; 1.2.4. Factorization; 1.3. Discussion and conclusion
2. Bayesian Network: Modeling Formalism of the Structure Function of Boolean Systems2.1. Introduction; 2.2. BN models in the Boolean case; 2.2.1. BN model from cut-sets; 2.2.2. BN model from tie-sets; 2.2.3. BN model from a top-down approach; 2.2.4. BN model of a bowtie; 2.3. Standard Boolean gates CPT; 2.4. Non-deterministic CPT; 2.5. Industrial applications; 2.6. Conclusion; 3. Bayesian Network: Modeling Formalism of the Structure Function of Multi-State Systems; 3.1. Introduction; 3.2. BN models in the multi-state case; 3.2.1. BN model of multi-state systems from tie-sets
3.2.2. BN model of multi-state systems from cut-sets3.2.3. BN model of multi-state systems from functional and dysfunctional analysis; 3.3. Non-deterministic CPT; 3.4. Industrial applications; 3.5. Conclusion; PART 2. Dynamic Bayesian Networks; 4. Dynamic Bayesian Networks: Integrating Environmental and Operating Constraints in Reliability Computation; 4.1. Introduction; 4.2. Component modeled by a DBN; 4.2.1. DBN model of a MC; 4.2.2. DBN model of non-homogeneous MC; 4.2.3. Stochastic process with exogenous constraint; 4.3. Model of a dynamic multi-state system
4.4. Discussion on dependent processes4.5. Conclusion; 5. Dynamic Bayesian Networks: Integrating Reliability Computation in the Control System; 5.1. Introduction; 5.2. Integrating reliability information into the control; 5.3. Control integrating reliability modeled by DBN; 5.3.1. Modeling and controlling an over-actuated system; 5.3.2. Integrating reliability; 5.4. Application to a drinking water network; 5.4.1. DBN modeling; 5.4.2. Results and discussion; 5.5. Conclusion; 5.6. Acknowledgments; Conclusion; Modeling the functional consequences of failures from structured knowledge
Dynamic modeling system reliability based on the reliability of components from the environmentSynthesis of the control law with the aim of optimizing system reliability based on its sensitivity to actuator failures; Bibliography; Index; Other titles from iSTE in Systems and Industrial Engineering - Robotics; EULA
Sommario/riassunto: This book explains the principles of knowledge structuration to ensure a valid BN and DBN model and illustrate the flexibility and efficiency of these representations in dependability, risk analysis and control of multi-state systems and dynamic systems. Across five chapters, the authors present several modeling methods and industrial applications are referenced for illustration in real industrial contexts.--
Titolo autorizzato: Benefits of Bayesian network models  Visualizza cluster
ISBN: 1-119-34731-9
1-119-34744-0
1-119-34745-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910818395603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui