Vai al contenuto principale della pagina

Quasicrystals : a primer / / Christian Janot



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Janot C (Christian), <1936-> Visualizza persona
Titolo: Quasicrystals : a primer / / Christian Janot Visualizza cluster
Pubblicazione: Oxford : , : Clarendon Press, , 2012
©1992
Edizione: Second edition.
Descrizione fisica: 1 online resource (xviii, 409 pages ) : illustrations (black and white)
Disciplina: 548.81
Soggetto topico: Quasicrystals
Crystals
Note generali: Previous edition: 1992.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Contents -- 1 How to fill with atoms in condensed matter states -- 1.1 Introduction -- 1.2 Periodic structures -- 1.2.1 Lattices, cells, bases, and space groups -- 1.2.2 Atomic planes, rows, and indices -- 1.2.3 The reciprocal lattice -- 1.2.4 Experimental determination of crystal structures -- 1.2.5 The notion of forbidden symmetries -- 1.3 Liquids, glasses, and amorphous alloys -- 1.3.1 Description of 'disordered' systems -- 1.3.2 Diffraction with disordered systems -- 1.4 Quasiperiodicity: another type of long-range order -- 1.4.1 A one-dimensional example of non-periodic long-range order -- 1.4.2 The sharp diffraction peaks of a Fibonacci chain -- 1.4.3 Orientational order in quasicrystals -- 1.4.4 Direct quasiperiodic space tiling procedures -- 1.4.5 Quasiperiodicity as generated by projection or cut from higher dimensional space -- 1.4.6 Modulated crystals and quasicrystals -- 1.5 Problems -- References -- 2 Meal quasicrystals: preparation and characterization -- 2.1 Introduction -- 2.2 Preparation methods -- 2.2.1 The melt spinning technique -- 2.2.2 Other production techniques for metastable quasicrystals -- 2.2.3 Conventional casting -- 2.3 Characterization of quasicrystalline samples -- 2.3.1 Electron, X-ray, and neutron interactions with matter -- 2.3.2 Electron diffraction -- 2.3.3 High-resolution electron microscopy -- 2.3.4 Neutron and X-ray diffraction -- 2.4 The various families of quasicrystals and their order perfection -- 2.5 Quasicrystals versus twinned crystals -- 2.5.1 The AlCuFe microcrystalline state -- 2.5.2 The AlCuFe perfect icosahedral state -- 2.6 Phason-induced phase transition and phase diagram in the AlFeCu system -- 2.7 A phase diagram for the AlPdMn system -- 2.8 Conclusion -- 2.9 Problems -- References -- 3 High-dimensional crystallography -- 3.1 Introduction.
3.2 The basic principles of quasicrystallography -- 3.2.1 The general scheme of experimental crystallography -- 3.2.2 Particular aspects of quasiperiodic structures -- 3.2.3 Further problems ... and further solutions -- 3.2.4 'Tailoring' the n-dim atomic objects: final modelling of quasicrystal structure -- 3.2.5 The high-dim representation of some imperfection: phason shift and strain -- 3.3 Six-dimensional crystallography for 3-dim icosahedral quasicrystals -- 3.3.1 Why six dimensions? -- 3.3.2 Possible space group for icosahedral quasicrystals -- 3.3.3 Body-centred and face-centred icosahedral quasicrystals -- 3.3.4 The choice of a coordinate system in 3-dim for the PI space group -- 3.3.5 Some useful properties -- 3.3.6 Indexing other structure patterns -- 3.3.7 Direct space description and basic principles for a cut algorithm -- 3.4 Some further consideration of the atomic objects of the n-dim image -- 3.4.1 A summary of the general properties -- 3.4.2 From the sphere approximation to faceted objects -- 3.4.3 Formal faceting conditions of the A[Sub(perp)] atomic surfaces -- 3.4.4 Is it compulsory to have polyhedral A[Sub(perp)]? -- 3.5 Problems -- References -- 4 Where are the atoms? -- 4.1 Introduction -- 4.2 Experimental determination of quasicrystal structures -- 4.2.1 Data collection and scaling procedures -- 4.2.2 Experimentally determined structure of the AlLiCu quasicrystal -- 4.2.3 An insight into the experimental determination of AlMn-like quasicrystal structures: an example of parallel components in the atomic surfaces -- 4.2.4 Structures of the perfect quasicrystals of the AlFeCu and AlPdMn families -- 4.2.5 Structures of decagonal quasicrystals -- 4.2.6 Another way of solving the phase problem -- 4.3 Three-dimensional atomic models -- 4.3.1 General statements about the 3-dim approach.
4.3.2 Classes of 'quasilattice' and decorations of tiles -- 4.3.3 The periodic approximants of a quasicrystal structure: basic definitions -- 4.3.4 Examples of the 3-dim tiling model for icosahedral quasicrystals -- 4.4 Conclusion -- 4.5 Problems -- References -- 5 Phonems, phasons, dislocations in quasicrystals -- 5.1 Introduction -- 5.2 Basic knowledge about lattice dynamics and defects in periodic structures -- 5.2.1 Elastic waves in solids -- 5.2.2 Lattice waves and Brillouin zones -- 5.2.3 Superstructure effects and energy gaps -- 5.2.4 Lattice waves in three-dimensional lattices -- 5.2.5 Strain/stress distribution in periodic lattices due to structure defects -- 5.2.6 Generalized continuum elasticity and influence of fluctuating strain fields on diffraction patterns -- 5.3 Phonons in disordered materials -- 5.3.1 Vibration modes in an atomic chain with mass defects -- 5.3.2 Vibration modes in 'amorphous solids' -- 5.3.3 Fractal structures and fractons -- 5.4 Modulation and quasiperiodicity effects on lattice dynamics -- 5.4.1 A qualitative approach to modulation effects -- 5.4.2 The notions of phason and amplitudon modes -- 5.4.3 The modulated spring model -- 5.4.4 Excitation in incommensurate phases -- 5.4.5 Numerical results for a Fibonacci chain -- 5.4.6 Lattice dynamics of three-dimensional quasicrystals: calculations and experiments -- 5.5 Concepts of elasticity and defects in quasiperiodic structures -- 5.5.1 The density wave picture and the high-dim representation of quasiperiodic structures -- 5.5.2 Examples of phonon-Iike strain fields -- 5.5.3 Examples of phason-like strain fields -- 5.5.4 Examples of dislocation configurations in quasicrystals -- 5.6 Conclusion -- 5.7 Problems -- References -- 6 A little more about the physics of quasicrystals -- 6.1 Introduction -- 6.2 Is perfect quasicrystal growth an acceptable physical concept?.
6.2.1 The one-dimensional case as an illustration -- 6.2.2 Criteria for the physical growability of a 2-dim Penrose tiling -- 6.2.3 The vertex matching rules as local growth requirements for a quasicrystal -- 6.2.4 Decapods acting as very efficient screw dislocations -- 6.3 Can icosahedral order be grown out of disorder? -- 6.3.1 The Landau theory -- 6.3.2 Liquid-solid transitions -- 6.3.3 Liquid to isosahedral solid transitions -- 6.4 The alternative ways for a quasicrystal to grow -- 6.4.1 Random accretion models or relaxation processes -- 6.4.2 What about random tiling growth? -- 6.4.3 Quasicrystal growth via 'relaxation processes' -- 6.5 Where are the electrons and how do they move? -- 6.5.1 The basic concepts as introduced for regular crystalline structures -- 6.5.2 Effect of disorder on electron behaviour -- 6.5.3 Experimental electronic properties of quasicrystals -- 6.5.4 The theoretical aspects of electrons in quasicrystals: the critical states -- 6.5.5 Quasicrystals as a hierarchy of clusters -- 6.6 Conclusion -- 6.7 Problems -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- V -- W -- Z.
Sommario/riassunto: This primer provides a descriptive approach to the subject of quasicrystals for those coming to it for the first time. The various practical, experimental, and theoretical topics are dealt with in an accessible style. The book is completed by problem sets and there is a computer program that generates a Penrose lattice.
Titolo autorizzato: Quasicrystals  Visualizza cluster
ISBN: 0-19-102179-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910813096703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Oxford classic texts in the physical sciences.