Vai al contenuto principale della pagina

Micro- and nanomanipulation tools / / edited by Yu Sun and Xinyu Liu ; contributors, Alex Abramson [and sixty-five others]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Micro- and nanomanipulation tools / / edited by Yu Sun and Xinyu Liu ; contributors, Alex Abramson [and sixty-five others] Visualizza cluster
Pubblicazione: Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2015
©2015
Descrizione fisica: 1 online resource (609 p.)
Disciplina: 537.6226
Soggetto topico: Nanoelectromechanical systems
Micrurgy
Persona (resp. second.): SunYu
LiuXinyu
AbramsonAlex
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references at the end of each chapters and index.
Nota di contenuto: Cover; Title Page; Copyright; Contents; About the Editors; Series Editors Preface; Preface; List of Contributors; Chapter 1 High-Speed Microfluidic Manipulation of Cells; 1.1 Introduction; 1.2 Direct Cell Manipulation; 1.2.1 Electrical Cell Manipulation; 1.2.2 Magnetic Cell Manipulation; 1.2.3 Optical Cell Manipulation; 1.2.4 Mechanical Cell Manipulation; 1.2.4.1 Constriction-Based Cell Manipulation; 1.2.4.2 Shear-Induced Cell Manipulation; 1.3 Indirect Cell Manipulation; 1.3.1 Cell Separation; 1.3.1.1 Hydrodynamic (Passive) Cell Separation
1.3.1.2 Nonhydrodynamic (Active) Particle Separation1.3.2 Cell Alignment (Focusing); 1.3.2.1 Cell Alignment (Focusing) for Flow Cytometry; 1.3.2.2 Cell Solution Exchange; 1.4 Summary; Acknowledgments; References; Chapter 2 Micro and Nano Manipulation and Assembly by Optically Induced Electrokinetics; 2.1 Introduction; 2.2 Optically Induced Electrokinetic (OEK) Forces; 2.2.1 Classical Electrokinetic Forces; 2.2.1.1 Dielectrophoresis (DEP); 2.2.1.2 AC Electroosmosis (ACEO); 2.2.1.3 Electrothermal Effects (ET); 2.2.1.4 Buoyancy Effects; 2.2.1.5 Brownian Motion
2.2.2 Optically Induced Electrokinetic Forces2.2.2.1 OEK Chip: Operational Principle and Design; 2.2.2.2 Spectrum-Dependent ODEP Force; 2.2.2.3 Waveform-Dependent ODEP Force; 2.3 OEK-Based Manipulation and Assembly; 2.3.1 Manipulation and Assembly of Nonbiological Materials; 2.3.2 Biological Entities: Cells and Molecules; 2.3.3 Manipulation of Fluidic Thin Films; 2.4 Summary; References; Chapter 3 Manipulation of DNA by Complex Confinement Using Nanofluidic Slits; 3.1 Introduction; 3.2 Slitlike Confinement of DNA; 3.3 Differential Slitlike Confinement of DNA; 3.4 Experimental Studies
3.5 Design of Complex Slitlike Devices3.6 Fabrication of Complex Slitlike Devices; 3.7 Experimental Conditions; 3.8 Conclusion; Disclaimer; References; Chapter 4 Microfluidic Approaches for Manipulation and Assembly of One-Dimensional Nanomaterials; 4.1 Introduction; 4.2 Microfluidic Assembly; 4.2.1 Hydrodynamic Focusing; 4.2.1.1 Concept and Mechanism; 4.2.1.2 2D and 3D Hierarchy; 4.2.1.3 Symmetrical and Asymmetrical Behavior; 4.2.2 HF-Based NW Assembly; 4.2.2.1 The Principle; 4.2.2.2 Device Design and Fabrication; 4.2.2.3 NW Assembly by Symmetrical Hydrodynamic Focusing
4.2.2.4 NW Assembly by Asymmetrical Hydrodynamic Focusing4.3 Summary; References; Chapter 5 Optically Assisted and Dielectrophoretical Manipulation of Cells and Molecules on Microfluidic Platforms; 5.1 Introduction; 5.2 Operating Principle and Fundamental Physics of the ODEP Platform; 5.2.1 ODEP Force; 5.2.2 Optically Induced ACEO Flow; 5.2.3 Electrothermal (ET) Force; 5.2.4 Experimental Setup of an ODEP Platform; 5.2.4.1 Light Source; 5.2.4.2 Materials of the Photoconductive Layer; 5.3 Applications of the ODEP Platform; 5.3.1 Cell Manipulation; 5.3.2 Cell Separation; 5.3.3 Cell Rotation
5.3.4 Cell Electroporation
Sommario/riassunto: Combining robotics with nanotechnology, this ready reference summarizes the fundamentals and emerging applications in this fascinating research field. This is the first book to introduce tools specifically designed and made for manipulating micro- and nanometer-sized objects, and presents such examples as semiconductor packaging and clinical diagnostics as well as surgery. The first part discusses various topics of on-chip and device-based micro- and nanomanipulation, including the use of acoustic, magnetic, optical or dielectrophoretic fields, while surface-driven and high-speed microfluidic
Titolo autorizzato: Micro- and nanomanipulation tools  Visualizza cluster
ISBN: 3-527-69025-5
3-527-69023-9
3-527-69022-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910810992603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Advanced micro & nanosystems.